Chapter 1

Preliminaries

1.1 Induction

Let \(N = \{0, 1, 2, \ldots\} \) be the set of natural numbers. Suppose that \(S \) is a subset of \(N \) with the following two properties: first \(0 \in S \), and second, whenever \(n \in S \), then \(n + 1 \in S \) as well. Then, invoking the Induction Principle (IP) we can conclude that \(S = N \).

We shall use the IP with a more convenient notation; let \(P \) be a property of natural numbers, in other words, \(P \) is a unary relation such that \(P(i) \) is either true or false. The relation \(P \) may be identified with a set \(S_P \) in the obvious way, i.e., \(i \in S_P \) iff \(P(i) \) is true. For example, if \(P \) is the property of being prime, then \(P(2) \) and \(P(3) \) are true, but \(P(6) \) is false, and \(S_P = \{2, 3, 5, 7, 11, \ldots\} \). Using this notation the IP may be stated as:

\[
[P(0) \land \forall n(P(n) \rightarrow P(n + 1))] \rightarrow \forall m P(m), \tag{1.1}
\]

for any (unary) relation \(P \) over \(N \). In practice, we use (1.1) as follows: first we prove that \(P(0) \) holds (this is the basis case). Then we show that \(\forall n(P(n) \rightarrow P(n + 1)) \) (this is the induction step). Finally, using (1.1) and modus ponens, we conclude that \(\forall m P(m) \).

As an example, let \(P \) be the assertion \text{“the sum of the first } i \text{ odd numbers equals } i^2 \text{.”} \] We follow the convention that the sum of an empty set of numbers is zero; thus \(P(0) \) holds as the set of the first zero odd numbers is an empty set. \(P(1) \) is true as \(1 = 1^2 \), and \(P(3) \) is also true as \(1 + 3 + 5 = 9 = 3^2 \). We want to show that in fact \(\forall n P(n) \) i.e., \(P \) is always true, and so \(S_P = N \).

Notice that \(S_P = N \) does not mean that all numbers are odd—an obviously false assertion. We are using the natural numbers to index odd numbers, i.e., \(o_1 = 1, o_2 = 3, o_3 = 5, o_4 = 7, \ldots \), and our induction is over this indexing (where \(o_i \) is the \(i \)-th odd number, i.e., \(o_i = 2i - 1 \)). That is, we are proving that for all \(i \in N \), \(o_1 + o_2 + o_3 + \cdots + o_i = i^2 \); our assertion
P(i) is precisely the statement \(o_1 + o_2 + o_3 + \cdots + o_i = i^2. \)

We now use induction: the basis case is \(P(0) \) and we already showed that it holds. Suppose now that the assertion holds for \(n \), i.e., the sum of the first \(n \) odd numbers is \(n^2 \), i.e., \(1 + 3 + 5 + \cdots + (2n-1) = n^2 \) (this is our inductive hypothesis or inductive assumption). Consider the sum of the first \((n+1) \) odd numbers,

\[
1 + 3 + 5 + \cdots + (2n-1) + (2n+1) = n^2 + (2n+1) = (n+1)^2,
\]

and so we just proved the induction step, and by IP we have \(\forall m P(m) \).

Problem 1.1. Prove that \(1 + \sum_{j=0}^{i} 2^j = 2^{i+1} \).

Sometimes it is convenient to start our induction higher than at 0. We have the following generalized induction principle:

\[
[P(k) \land \forall n \geq k(P(n) \rightarrow P(n + 1))] \rightarrow \forall m \geq k P(m),
\]

(1.2)

for any predicate \(P \) and any number \(k \). Note that (1.2) follows easily from (1.1) if we simply let \(P'(i) \) be \(P(i + k) \), and do the usual induction on the predicate \(P'(i) \).

Problem 1.2. Use induction to prove that for \(n \geq 1 \),

\[
1^3 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2.
\]

Problem 1.3. For every \(n \geq 1 \), consider a square of size \(2^n \times 2^n \) where one square is missing. Show that the resulting square can be filled with “L” shapes—that is, with clusters of three squares, where the three squares do not form a line.

Problem 1.4. Suppose that we restate the generalized IP (1.2) as

\[
[P(k) \land \forall n \land (P(n) \rightarrow P(n + 1))] \rightarrow \forall m \geq k P(m),
\]

(1.2')

What is the relationship between (1.2) and (1.2')?

Problem 1.5. The Fibonacci sequence is defined as follows: \(f_0 = 0 \) and \(f_1 = 1 \) and \(f_{i+2} = f_{i+1} + f_i \), \(i \geq 0 \). Prove that for all \(n \geq 1 \) we have:

\[
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix},
\]

where the left-hand side is the \(n \)-th power of a \(2 \times 2 \) matrix.

Problem 1.6. Write a Python program that computes the \(n \)-th Fibonacci number using the matrix multiplication trick of problem 1.5.
Problem 1.7. Prove the following: if m divides n, then f_m divides f_n, i.e., $m|n \Rightarrow f_m|f_n$.

The Complete Induction Principle (CIP) is just like IP except that in the induction step we show that if $P(i)$ holds for all $i \leq n$, then $P(n + 1)$ also holds, i.e., the induction step is now $\forall n((\forall i \leq n)P(i) \rightarrow P(n + 1))$.

Problem 1.8. Use the CIP to prove that every number (in \mathbb{N}) greater than 1 may be written as a product of one or more prime numbers.

Problem 1.9. Suppose that we have a (Swiss) chocolate bar consisting of a number of squares arranged in a rectangular pattern. Our task is to split the bar into small squares (always breaking along the lines between the squares) with a minimum number of breaks. How many breaks will it take? Make an educated guess, and prove it by induction.

The Least Number Principle (LNP) says that every non-empty subset of the natural numbers must have a least element. A direct consequence of the LNP is that every decreasing non-negative sequence of integers must terminate; that is, if $R = \{r_1, r_2, r_3, \ldots \} \subseteq \mathbb{N}$ where $r_i > r_{i+1}$ for all i, then R is a finite subset of \mathbb{N}. We are going to be using the LNP to show termination of algorithms.

Problem 1.10. Show that IP, CIP, and LNP are equivalent principles.

There are three standard ways to list the nodes of a binary tree. We present them below, together with a recursive procedure that lists the nodes according to each scheme.

Infix: left sub-tree, root, right sub-tree.

Prefix: root, left sub-tree, right sub-tree.

Postfix: left sub-tree, right sub-tree, root.

See the example in figure 1.1.

![Fig. 1.1 A binary tree with the corresponding representations.](image-url)
Note that some authors use a different name for infix, prefix, and postfix; they call it inorder, preorder, and postorder, respectively.

Problem 1.11. Show that given any two representations we can obtain from them the third one, or, put another way, from any two representations we can reconstruct the tree. Show, using induction, that your reconstruction is correct. Then show that having just one representation is not enough.

Problem 1.12. Write a Python program that takes as input two of the three descriptions, and outputs the third. One way to present the input is as a text file, consisting of two rows, for example

infix: 2,1,6,4,7,3,5
postfix: 2,6,7,4,5,3,1

and the corresponding output would be: **prefix:** 1,2,3,4,6,7,5. Note that each row of the input has to specify the “scheme” of the description.

1.2 Invariance

The Invariance Technique (IT) is a method for proving assertions about the outcomes of procedures. The IT identifies some property that remains true throughout the execution of a procedure. Then, once the procedure terminates, we use this property to prove assertions about the output.

As an example, consider an 8×8 board from which two squares from opposing corners have been removed (see figure 1.2). The area of the board is $64 - 2 = 62$ squares. Now suppose that we have 31 dominoes of size 1×2. We want to show that the board cannot be covered by them.

![An 8 x 8 board.](image.png)
Verifying this by *brute force* (that is, examining all possible coverings) is an extremely laborious job. However, using IT we argue as follows: color the squares as a chess board. Each domino, covering two adjacent squares, covers 1 white and 1 black square, and, hence, each placement covers as many white squares as it covers black squares. Note that the number of white squares and the number of black squares differ by 2—opposite corners lying on the same diagonal have the same color—and, hence, no placement of dominoes yields a cover; done!

More formally, we place the dominoes one by one on the board, any way we want. The invariant is that after placing each new domino, the number of covered white squares is the same as the number of covered black squares. We prove that this is an invariant by induction on the number of placed dominoes. The basis case is when zero dominoes have been placed (so zero black and zero white squares are covered). In the induction step, we add one more domino which, no matter how we place it, covers one white and one black square, thus maintaining the property. At the end, when we are done placing dominoes, we would have to have as many white squares as black squares covered, which is not possible due to the nature of the coloring of the board (i.e., the number of black and whites squares is not the same). Note that this argument extends easily to the $n \times n$ board.

Problem 1.13. Let n be an odd number, and suppose that we have the set \{1, 2, \ldots, 2n\}. We pick any two numbers a, b in the set, delete them from the set, and replace them with $|a - b|$. Continue repeating this until just one number remains in the set; show that this remaining number must be odd.

The next three problems have the common theme of social gatherings. We always assume that relations of likes and dislikes, of being an enemy or a friend, are reflexive relations: that is, if a likes b, then b also likes a, etc. See appendix B for background on relations—reflexive relations are defined on page 157.

Problem 1.14. At a country club, each member dislikes at most three other members. There are two tennis courts; show that each member can be assigned to one of the two courts in such a way that at most one person they dislike is also playing on the same court.

We use the vocabulary of “country clubs” and “tennis courts,” but it is clear that Problem 1.14 is a typical situation that one might encounter in computer science: for example, a multi-threaded program which is run on
two processors, where a pair of threads are taken to be “enemies” when they use many of the same resources. Threads that require the same resources ought to be scheduled on different processors—as much as possible. In a sense, these seemingly innocent problems are parables of computer science.

Problem 1.15. You are hosting a dinner party where $2n$ people are going to be sitting at a round table. As it happens in any social clique, animosities are rife, but you know that everyone sitting at the table dislikes at most $(n - 1)$ people; show that you can make sitting arrangements so that nobody sits next to someone they dislike.

Problem 1.16. Handshakes are exchanged at a meeting. We call a person an odd person if he has exchanged an odd number of handshakes. Show that, at any moment, there is an even number of odd persons.

1.3 Correctness of algorithms

How can we prove that an algorithm is correct\(^1\) We make two assertions, called the pre-condition and the post-condition; by correctness we mean that whenever the pre-condition holds before the algorithm executes, the post-condition will hold after it executes. By termination we mean that whenever the pre-condition holds, the algorithm will stop running after finitely many steps. Correctness without termination is called partial correctness, and correctness per se is partial correctness with termination.

These concepts can be made more precise: let A be an algorithm, and let \mathcal{I}_A be the set of all well-formed inputs for A; the idea is that if $I \in \mathcal{I}_A$ then it “makes sense” to give I as an input to A. The concept of a “well-formed” input can also be made precise, but it is enough to rely on our intuitive understanding—for example, an algorithm that takes a pair of integers as input will not be “fed” a matrix. Let $O = A(I)$ be the output of A on I, if it exists. Let α_A be a pre-condition and β_A a post-condition of A: if I satisfies the pre-condition we write $\alpha_A(I)$ and if O satisfies the post-condition we write $\beta_A(O)$. Then, partial correctness of A with respect to pre-condition α_A and post-condition β_A can be stated as:

$$\left(\forall I \in \mathcal{I}_A \right) \left[(\alpha_A(I) \land \exists O (O = A(I))) \rightarrow \beta_A(A(I)) \right], \quad (1.3)$$

\(^1\)A wonderful introduction to this topic can be found in [Harel (1987)], in chapter 5, “The correctness of algorithms, or getting it done right.”
which in words states the following: for any well formed input \(I \), if \(I \) satisfies the pre-condition and \(A(I) \) produces an output, i.e., terminates, which is stated as \(\exists O(O = A(I)) \), then this output satisfies the post-condition.

Full correctness is (1.3) together with the assertion that for all \(I \in I_A \), \(A(I) \) terminates (and hence there exists an \(O \) such that \(O = A(I) \)).

A fundamental notion in the analysis of algorithms is that of a loop invariant; it is an assertion that stays true after each execution of a “while” (or “for”) loop. Coming up with the right assertion, and proving it, is a creative endeavor. If the algorithm terminates, the loop invariant is an assertion that helps to prove the implication \(\alpha_A(I) \rightarrow \beta_A(A(I)) \).

Once the loop invariant has been shown to hold, it is used for proving partial correctness of the algorithm. So the criterion for selecting a loop invariant is that it helps in proving the post-condition. In general many different loop invariants (and for that matter pre and post-conditions) may yield a desirable proof of correctness; the art of the analysis of algorithms consists in selecting them judiciously. We usually need induction to prove that a chosen loop invariant holds after each iteration of a loop, and usually we also need the pre-condition as an assumption in this proof.

An implicit pre-condition of all the algorithms in this section is that the numbers are in \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \).

1.3.1 Division algorithm

We analyze the algorithm for integer division, algorithm 1.1. Note that the \(q \) and \(r \) returned by the division algorithm are usually denoted as \(\text{div}(x, y) \) (the quotient) and \(\text{rem}(x, y) \) (the remainder), respectively.

```
Algorithm 1.1 Division
Pre-condition: \( x \geq 0 \land y > 0 \)
1: \( q \leftarrow 0 \)
2: \( r \leftarrow x \)
3: while \( y \leq r \) do
4: \( r \leftarrow r - y \)
5: \( q \leftarrow q + 1 \)
6: end while
7: return \( q, r \)
Post-condition: \( x = (q \cdot y) + r \land 0 \leq r < y \)
```
We propose the following assertion as the loop invariant:

\[x = (q \cdot y) + r \land r \geq 0. \]

We show that (1.4) holds after each iteration of the loop. Basis case (i.e., zero iterations of the loop—we are just before line 3 of the algorithm): \(q = 0, r = x \), so \(x = (q \cdot y) + r \) and since \(x \geq 0 \) and \(r = x, r \geq 0 \).

Induction step: suppose \(x = (q \cdot y) + r \land r \geq 0 \) and we go once more through the loop, and let \(q', r' \) be the new values of \(q, r \), respectively (computed in lines 4 and 5 of the algorithm). Since we executed the loop one more time it follows that \(y \leq r \) (this is the condition checked for in line 3 of the algorithm), and since \(r' = r - y \), we have that \(r' \geq 0 \). Thus,

\[x = (q \cdot y) + r = ((q + 1) \cdot y) + (r - y) = (q' \cdot y) + r', \]

and so \(q', r' \) still satisfy the loop invariant (1.4).

Now we use the loop invariant to show that (if the algorithm terminates) the post-condition of the division algorithm holds, if the pre-condition holds. This is very easy in this case since the loop ends when it is no longer true that \(y \leq r \), i.e., when it is true that \(r < y \). On the other hand, (1.4) holds after each iteration, and in particular the last iteration. Putting together (1.4) and \(r < y \) we get our post-condition, and hence partial correctness.

To show termination we use the least number principle (LNP). We need to relate some non-negative monotone decreasing sequence to the algorithm; just consider \(r_0, r_1, r_2, \ldots \), where \(r_0 = x \), and \(r_i \) is the value of \(r \) after the \(i \)-th iteration. Note that \(r_{i+1} = r_i - y \). First, \(r_i \geq 0 \), because the algorithm enters the while loop only if \(y \leq r \), and second, \(r_{i+1} < r_i \), since \(y > 0 \). By LNP such a sequence “cannot go on for ever,” (in the sense that the set \(\{r_i|i = 0, 1, 2, \ldots\} \) is a subset of the natural numbers, and so it has a least element), and so the algorithm must terminate.

Thus we have shown full correctness of the division algorithm.

Problem 1.17. Write a Python program that takes as input \(x \) and \(y \), and outputs the intermediate values of \(q \) and \(r \), and finally the quotient and remainder of the division of \(x \) by \(y \).

1.3.2 Euclid’s algorithm

Given two positive integers \(a \) and \(b \), their greatest common divisor, denoted as \(\gcd(a, b) \), is the largest positive integer that divides them both. Euclid’s
algorithm, presented as algorithm 1.2, is a procedure for finding the greatest common divisor of two numbers. It is one of the oldest known algorithms—it appeared in Euclid’s *Elements* (Book 7, Propositions 1 and 2) around 300 BC.

Algorithm 1.2 Euclid

Pre-condition: \(a > 0 \land b > 0\)

1: \(m \leftarrow a \land n \leftarrow b \land r \leftarrow \text{rem}(m, n)\)

2: \(\text{while } (r > 0) \text{ do}\)

3: \(m \leftarrow n \land n \leftarrow r \land r \leftarrow \text{rem}(m, n)\)

4: \(\text{end while}\)

5: \(\text{return } n\)

Post-condition: \(n = \gcd(a, b)\)

Note that to compute \(\text{rem}(n, m)\) in lines 1 and 3 of Euclid’s algorithm we need to use algorithm 1.1 (the division algorithm) as a subroutine; this is a typical “composition” of algorithms. Also note that lines 1 and 3 are executed from left to right, so in particular in line 3 we first do \(m \leftarrow n\), then \(n \leftarrow r\) and finally \(r \leftarrow \text{rem}(m, n)\). This is important for the algorithm to work correctly.

To prove the correctness of Euclid’s algorithm we are going to show that after each iteration of the while loop the following assertion holds:

\[
m > 0, n > 0 \land \gcd(m, n) = \gcd(a, b),
\]

that is, (1.5) is our loop invariant. We prove this by induction on the number of iterations. Basis case: after zero iterations (i.e., just before the while loop starts—so after executing line 1 and before executing line 2) we have that \(m = a > 0\) and \(n = b > 0\), so (1.5) holds trivially. Note that \(a > 0\) and \(b > 0\) by the pre-condition.

For the induction step, suppose \(m, n > 0\) and \(\gcd(a, b) = \gcd(m, n)\), and we go through the loop one more time, yielding \(m', n'\). We want to show that \(\gcd(m, n) = \gcd(m', n')\). Note that from line 3 of the algorithm we see that \(m' = n, n' = r = \text{rem}(m, n)\), so in particular \(m' = n > 0\) and \(n' = r = \text{rem}(m, n) > 0\) since if \(r = \text{rem}(m, n)\) were zero, the loop would have terminated (and we are assuming that we are going through the loop one more time). So it is enough to prove the assertion in Problem 1.18.
Problem 1.18. Show that for all $m, n > 0$, $\gcd(m, n) = \gcd(n, \text{rem}(m, n))$.

Now the correctness of Euclid’s algorithm follows from (1.5), since the algorithm stops when $r = \text{rem}(m, n) = 0$, so $m = q \cdot n$, and so $\gcd(m, n) = n$.

Problem 1.19. Show that Euclid’s algorithm terminates.

Problem 1.20. Do you have any ideas how to speed-up Euclid’s algorithm?

Problem 1.21. Modify Euclid’s algorithm so that given integers m, n as input, it outputs integers a, b such that $am + bn = g = \gcd(m, n)$. This is called the extended Euclid’s algorithm.

(a) Use the LNP to show that if $g = \gcd(m, n)$, then there exist a, b such that $am + bn = g$.

(b) Design Euclid’s extended algorithm, and prove its correctness.

(c) The usual Euclid’s extended algorithm has a running time polynomial in $\min\{m, n\}$; show that this is the running time of your algorithm, or modify your algorithm so that it runs in this time.

Problem 1.22. Write a Python program that implements Euclid’s extended algorithm. Then perform the following experiment: run it on a random selection of inputs of a given size, for sizes bounded by some parameter N; compute the average number of steps of the algorithm for each input size $n \leq N$, and use gnuplot\(^2\) to plot the result. What does $f(n)$—which is the “average number of steps” of Euclid’s extended algorithm on input size n—look like? Note that size is not the same as value; inputs of size n are inputs with a binary representation of n bits.

1.3.3 Palindromes algorithm

Algorithm 1.3 tests strings for palindromes, which are strings that read the same backwards as forwards, for example, madam imadam or racecar.

Let the loop invariant be: after the k-th iteration, $i = k + 1$ and for all j such that $1 \leq j \leq k$, $A[j] = A[n - i + 1]$. We prove that the loop invariant holds by induction on k. Basis case: before any iterations take place, i.e., after zero iterations, there are no j’s such that $1 \leq j \leq 0$, so the

\(^2\)Gnuplot is a command-line driven graphing utility with versions for most platforms. If you do not already have it, you can download it from http://www.gnuplot.info. If you prefer, you can use any other plotting utility.
Algorithm 1.3 Palindromes

Pre-condition: $n \geq 1 \land A[1 \ldots n]$ is a character array
1: $i \leftarrow 1$
2: while $(i \leq \lfloor \frac{n}{2} \rfloor)$ do
3: if $(A[i] \neq A[n - i + 1])$ then
4: return F
5: end if
6: end while
7: return T

Post-condition: return T iff A is a palindrome

The second part of the loop invariant is (vacuously) true. The first part of the loop invariant holds since i is initially set to 1.

Induction step: we know that after k iterations, $A[j] = A[n-j+1]$ for all $1 \leq j \leq k$; after one more iteration we know that $A[k+1] = A[n-(k+1)+1]$, so the statement follows for all $1 \leq j \leq k+1$. This proves the loop invariant.

Problem 1.23. Using the loop invariant argue the partial correctness of the palindromes algorithm. Show that the algorithm for palindromes always terminates.

In is easy to manipulate strings in Python; a segment of a string is called a slice. Consider the word palindrome; if we set the variables s to this word,

$s = 'palindrome'$

then we can access different slices as follows:

```
print s[0:5]  palin
print s[5:10] drome
print s[5:] drome
print s[2:8:2] lnr
```

where the notation $[i:j]$ means the segment of the string starting from the i-th character (and we always start counting at zero!), to the j-th character, including the first but excluding the last. The notation $[i:]$ means from the i-th character, all the way to the end, and $[i:j:k]$ means starting from the i-th character to the j-th (again, not including the j-th itself), taking every k-th character.
One way to understand the string delimiters is to write the indices “in between” the numbers, as well as at the beginning and at the end. For example

\[0p_1a_2l_3i_4n_5d_6r_7o_8s_9e_{10}\]

and to notice that a slice \([i:j]\) contains all the symbols between index \(i\) and index \(j\).

Problem 1.24. Using Python’s inbuilt facilities for manipulating slices of strings, write a succinct program that checks whether a given string is a palindrome.

1.3.4 Further examples

Problem 1.25. Give an algorithm which on the input “a positive integer \(n\),” outputs “yes” if \(n = 2^k\) (i.e., \(n\) is a power of 2), and “no” otherwise. Prove that your algorithm is correct.

Problem 1.26. What does algorithm 1.4 compute? Prove your claim.

Algorithm 1.4 Problem 1.26

1. \(x \leftarrow m\); \(y \leftarrow n\); \(z \leftarrow 0\)
2. \textbf{while} \((x \neq 0)\) \textbf{do}
3. \hspace{1em} \textbf{if} \((\text{rem}(x, 2) = 1)\) \textbf{then}
4. \hspace{2em} \(z \leftarrow z + y\)
5. \hspace{1em} \textbf{end if}
6. \hspace{1em} \(x \leftarrow \text{div}(x, 2)\)
7. \hspace{1em} \(y \leftarrow y \cdot 2\)
8. \textbf{end while}
9. \textbf{return} \(z\)

Problem 1.27. What does algorithm 1.5 compute? Assume that \(a, b\) are positive integers (i.e., assume that the pre-condition is that \(a, b > 0\)). For which starting \(a, b\) does this algorithm terminate? In how many steps does it terminate, if it does terminate?

The following two problems require some linear algebra\(^3\). We say that a set of vectors \(\{v_1, v_2, \ldots, v_n\}\) is \textit{linearly independent} if \(\sum_{i=1}^{n} c_i v_i = 0\) implies that \(c_i = 0\) for all \(i\), and that they \textit{span} a vector space \(V \subseteq \mathbb{R}^n\)

\(^3\)A great and accessible introduction to linear algebra can be found in [Halmos (1995)].
Algorithm 1.5 Problem 1.27

1: while \((a > 0)\) do
2: if \((a < b)\) then
3: \((a, b) \leftarrow (2a, b - a)\)
4: else
5: \((a, b) \leftarrow (a - b, 2b)\)
6: end if
7: end while

if whenever \(v \in V\), then there exist \(c_i \in \mathbb{R}\) such that \(v = \sum_{i=1}^{n} c_i v_i\). We denote this as \(V = \text{span}\{v_1, v_2, \ldots, v_n\}\). A set of vectors \(\{v_1, v_2, \ldots, v_n\}\) in \(\mathbb{R}^n\) is a basis for a vector space \(V \subseteq \mathbb{R}^n\) if they are linearly independent and span \(V\). Let \(x \cdot y\) denote the dot-product of two vectors, defined as \(x \cdot y = (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = \sum_{i=1}^{n} x_i y_i\), and the norm of a vector \(x\) is defined as \(\|x\| = \sqrt{x \cdot x}\). Two vectors \(x, y\) are orthogonal if \(x \cdot y = 0\).

Problem 1.28. Let \(V \subseteq \mathbb{R}^n\) be a vector space, and \(\{v_1, v_2, \ldots, v_n\}\) its basis. Consider algorithm 1.6 and show that it produces an orthogonal basis.

Algorithm 1.6 Gram-Schmidt

Pre-condition: \(\{v_1, v_2, \ldots, v_n\}\) a basis for \(\mathbb{R}^n\)
1: \(v_1^* \leftarrow v_1\)
2: for \(i = 2, 3, \ldots, n\) do
3: for \(j = 1, 2, \ldots, (i - 1)\) do
4: \(\mu_{ij} \leftarrow (v_i \cdot v_j^*)/\|v_j^*\|^2\)
5: end for
6: \(v_i^* \leftarrow v_i - \sum_{j=1}^{i-1} \mu_{ij} v_j^*\)
7: end for

Post-condition: \(\{v_1^*, v_2^*, \ldots, v_n^*\}\) an orthogonal basis for \(\mathbb{R}^n\)

\(\{v_1^*, v_2^*, \ldots, v_n^*\}\) for the vector space \(V\). In other words, show that \(v_i^* \cdot v_j^* = 0\) when \(i \neq j\), and that \(\text{span}\{v_1, v_2, \ldots, v_n\} = \text{span}\{v_1^*, v_2^*, \ldots, v_n^*\}\). Justify why in line 4 of the algorithm we never divide by zero.

Problem 1.29. Implement the Gram-Schmidt algorithm (algorithm 1.6) in Python, but with the following twist: instead of computing over \(\mathbb{R}\), the real numbers, compute over \(\mathbb{Z}_2\), the field of two elements, where addition and multiplication are defined as follows:
In fact, this “twist” makes the implementation much easier, as you do not have to deal with the precision issues involved in implementing division operations over the field of real numbers.

Suppose that \(\{v_1, v_2, \ldots, v_n\} \) are linearly independent vectors in \(\mathbb{R}^n \). The lattice \(L \) spanned by these vectors is the set \(\{ \sum_{i=1}^{n} c_i v_i : c_i \in \mathbb{Z} \} \), i.e., \(L \) consists of linear combinations of the vectors \(\{v_1, v_2, \ldots, v_n\} \) where the coefficients are limited to be integers.

\textbf{Problem 1.30.} Suppose that \(\{v_1, v_2\} \) span a lattice in \(\mathbb{R}^2 \). Consider algorithm 1.7 and show that it terminates and outputs a new basis \(\{v_1, v_2\} \) for \(L \) where \(v_1 \) is the shortest vector in the lattice \(L \), i.e., \(\|v_1\| \) is as small as possible among all the vectors of \(L \).

Based on the examples presented thus far it may appear that it is fairly clear to the naked eye whether an algorithm terminates or not, and the difficulty consists in coming up with a proof. But that is not the case.

Clearly, if we have a trivial algorithm consisting of a single while-loop, with the condition \(i \geq 0 \), and the body of the loop consists of the single command \(i \leftarrow i+1 \), then we can immediately conclude that this while-loop will never terminate. But what about algorithm 1.8? Does it terminate?

\begin{verbatim}
Algorithm 1.7 Gauss lattice reduction in dimension 2
Pre-condition: \(\{v_1, v_2\} \) are linearly independent in \(\mathbb{R}^2 \)
1: loop
2: if \(\|v_2\| < \|v_2\| \) then
3: swap \(v_1 \) and \(v_2 \)
4: end if
5: \(m \leftarrow \lfloor v_1 \cdot v_2 / \|v_1\| \rfloor \)
6: if \(m = 0 \) then
7: return \(v_1, v_2 \)
8: else
9: \(v_2 \leftarrow v_2 - mv_1 \)
10: end if
11: end loop
\end{verbatim}
Algorithm 1.8 Ulam’s algorithm

Pre-condition: \(a > 0 \)

\[
x \leftarrow a
\]

while last three values of \(x \) not \(4, 2, 1 \) **do**

- **if** \(x \) is even **then**
 - \(x \leftarrow x/2 \)
- **else**
 - \(x \leftarrow 3x + 1 \)

end if

end while

For example, if \(a = 22 \), then one can check that \(x \) takes on the following values: \(22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 \), and algorithm 1.8 terminates.

It is conjectured that regardless of the initial value of \(a \), as long as \(a \) is a positive integer, algorithm 1.8 terminates. This conjecture is known as “Ulam’s problem.” No one has been able to prove that algorithm 1.8 terminates, and in fact proving termination would involve solving a difficult open mathematical problem.

Problem 1.31. Write a Python program that takes \(a \) as input and computes and displays all the values of Ulam’s problem until it sees \(4, 2, 1 \) at which point it stops. You have just written a program for which there is no proof of termination.

1.3.5 Recursion and fixed points

So far we have proved the correctness of while-loops and for-loops, but there is another way of “looping” using **recursive** procedures, i.e., algorithms that “call themselves.” We are going to see examples of such algorithms in the chapter on the divide and conquer method.

There is a robust theory of correctness of recursive algorithms based on fixed point theory, and in particular on Kleene’s theorem (see appendix B, theorem B.39). We briefly illustrate this approach with an example. We are going to be using partial orders; all the necessary background can be found in appendix B, in section B.3. Consider the recursive algorithm 1.9.

Footnotes:

- It is also called “Collatz Conjecture,” “Syracuse Problem,” “Kakutani’s Problem,” or “Hasse’s Algorithm.” While it is true that a rose by any other name would smell just as sweet, the preponderance of names shows that the conjecture is a very alluring
Algorithm 1.9 $F(x, y)$

1: if $x = y$ then
2: return $y + 1$
3: else
4: $F(x, F(x - 1, y + 1))$
5: end if

To see how this algorithm works consider computing $F(4, 2)$. First in line 1 it is established that $4 \neq 2$ and so we must compute $F(4, F(3, 3))$. We first compute $F(3, 3)$, recursively, so in line 1 it is now established that $3 = 3$, and so in line 2 y is set to 4 and that is the value returned, i.e., $F(3, 3) = 4$, so now we can go back and compute $F(4, F(3, 3)) = F(4, 4)$, so again, recursively, we establish in line 1 that $4 = 4$, and so in line 2 y is set to 5 and this is the value returned, i.e., $F(4, 2) = 5$. On the other hand it is easy to see that

$$F(3, 5) = F(3, F(2, 6)) = F(3, F(2, F(1, 7))) = \cdots,$$

and this procedure never ends as x will never equal y. Thus F is not a total function, i.e., not defined on all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.

Problem 1.32. What is the domain of definition of F as computed by algorithm 1.9? That is, the domain of F is $\mathbb{Z} \times \mathbb{Z}$, while the domain of definition is the largest subset $S \subseteq \mathbb{Z} \times \mathbb{Z}$ such that F is defined for all $(x, y) \in S$. We have seen already that $(4, 2) \in S$ while $(3, 5) \notin S$.

We now consider three different functions, all given by algorithms that are not recursive: algorithms 1.10, 1.11 and 1.12, computing functions f_1, f_2 and f_3, respectively.

Algorithm 1.10 $f_1(x, y)$

if $x = y$ then
 return $y + 1$
else
 return $x + 1$
end if

Functions f_1 has an interesting property: if we were to replace F in algorithm 1.9 with f_1 we would get back F. In other words, given algorithm 1.9, mathematical problem.
if we were to replace line 4 with \(f_1(x, f_1(x - 1, y + 1)) \), and compute \(f_1 \) with the (non-recursive) algorithm 1.10 for \(f_1 \), then algorithm 1.9 thus modified would now be computing \(F(x, y) \). Therefore, we say that the functions \(f_1 \) is a fixed point of the recursive algorithm 1.9.

For example, recall the we have already shown that \(F(4, 2) = 5 \), using the recursive algorithm 1.9 for computing \(F \). Replace line 4 in algorithm 1.9 with \(f_1(x, f_1(x - 1, y + 1)) \) and compute \(F(4, 2) \) anew; since \(4 \neq 2 \) we go directly to line 4 where we compute \(f_1(4, f_1(3, 3)) = f_1(4, 4) = 5 \). Notice that this last computation was not recursive, as we computed \(f_1 \) directly with algorithm 1.10, and that we have obtained the same value.

Consider now \(f_2, f_3 \), computed by algorithms 1.11, 1.12, respectively.

Algorithm 1.11 \(f_2(x, y) \)

```plaintext
if \( x \geq y \) then
    return \( x + 1 \)
else
    return \( y - 1 \)
end if
```

Algorithm 1.12 \(f_3(x, y) \)

```plaintext
if \( x \geq y \land (x - y \text{ is even}) \) then
    return \( x + 1 \)
end if
```

Notice that in algorithm 1.12, if it is not the case that \(x \geq y \) and \(x - y \) is even, then the output is undefined. Thus \(f_3 \) is a partial function, and if \(x < y \) or \(x - y \) is odd, then \((x, y)\) is not in its domain of definition.

Problem 1.33. Prove that \(f_1, f_2, f_3 \) are all fixed points of algorithm 1.9.

The function \(f_3 \) has one additional property. For every pair of integers \(x, y \) such that \(f_3(x, y) \) is defined, that is \(x \geq y \) and \(x - y \) is even, both \(f_1(x, y) \) and \(f_2(x, y) \) are also defined and have the same value as \(f_3(x, y) \). We say that \(f_3 \) is less defined than or equal to \(f_1 \) and \(f_2 \), and write \(f_3 \sqsubseteq f_1 \) and \(f_3 \sqsubseteq f_2 \); that is, we have defined (informally) a partial order on functions \(f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z} \).

Problem 1.34. Show that \(f_3 \sqsubseteq f_1 \) and \(f_3 \sqsubseteq f_2 \). Recall the notion of a domain of definition introduced in problem 1.32. Let \(S_1, S_2, S_3 \) be the
domains of definition of \(f_1, f_2, f_3 \), respectively. You must show that \(S_3 \subseteq S_1 \) and \(S_3 \subseteq S_2 \).

It can be shown that \(f_3 \) has this property, not only with respect to \(f_1 \) and \(f_2 \), but also with respect to all fixed points of algorithm 1.9. Moreover, \(f_3(x, y) \) is the only function having this property, and therefore \(f_3 \) is said to be the least (defined) fixed point of algorithm 1.9. It is an important application of Kleene’s theorem (theorem B.39) that every recursive algorithm has a unique fixed point.

1.3.6 Formal verification

The proofs of correctness we have been giving thus far are considered to be “informal” mathematical proofs. There is nothing wrong with an informal proof, and in many cases such a proof is all that is necessary to convince oneself of the validity of a small “code snippet.” However, there are many circumstances where extensive formal code validation is necessary; in that case, instead of an informal paper-and-pencil type of argument, we often employ computer assisted software verification. For example, the US Food and Drug Administration requires software certification in cases where medical devices are dependent on software for their effective and safe operation. When formal verification is required everything has to be stated explicitly, in a formal language, and proven painstakingly line by line. In this section we give an example of such a procedure.

Let \(\{ \alpha \} P \{ \beta \} \) mean that if formula \(\alpha \) is true before execution of \(P \), \(P \) is executed and terminates, then formula \(\beta \) will be true, i.e., \(\alpha, \beta \) are the precondition and postcondition of the program \(P \), respectively. They are usually given as formulas in some formal theory, such as first order logic over some language \(L \). We assume that the language is Peano Arithmetic; see Appendix C.

Using a finite set of rules for program verification, we want to show that \(\{ \alpha \} P \{ \beta \} \) holds, and conclude that the program is correct with respect to the specification \(\alpha, \beta \). As our example is small, we are going to use a limited set of rules for program verification, given in figure 1.3.

The “If” rule is saying the following: suppose that it is the case that \(\{ \alpha \land \beta \} P_1 \{ \gamma \} \) and \(\{ \alpha \land \neg \beta \} P_2 \{ \gamma \} \). This means that \(P_1 \) is (partially) correct with respect to precondition \(\alpha \land \beta \) and postcondition \(\gamma \), while \(P_2 \) is (partially) correct with respect to precondition \(\alpha \land \neg \beta \) and postcondition \(\gamma \). Then the program “if \(\beta \) then \(P_1 \) else \(P_2 \)” is (partially) correct with
Preliminaries

Consequence left and right
\[
\begin{align*}
\{\alpha\}P\{\beta\} & \quad (\beta \rightarrow \gamma) & \quad (\gamma \rightarrow \alpha) & \quad \{\alpha\}P\{\beta\} \\
\{\alpha\}P\{\gamma\} & \quad \{\gamma\}P\{\beta\}
\end{align*}
\]

Composition and assignment
\[
\begin{align*}
\{\alpha\}P_1\{\beta\} & \quad \{\beta\}P_2\{\gamma\} & \quad x := t \\
\{\alpha\}P_1P_2\{\gamma\} & \quad \{\alpha(t)\}x := t\{\alpha(x)\}
\end{align*}
\]

\[
\begin{align*}
\{\alpha \land \beta\}P_1\{\gamma\} & \quad \{\alpha \land \neg \beta\}P_2\{\gamma\} \\
\{\alpha\} & \quad \text{if } \beta \text{ then } P_1 \text{ else } P_2 \{\gamma\}
\end{align*}
\]

\[
\{\alpha \land \beta\}P\{\alpha\} & \quad \text{while } \beta \text{ do } P \{\alpha \land \neg \beta\}
\]

Fig. 1.3 A small set of rules for program verification.

respect to precondition \(\alpha\) and postcondition \(\gamma\) because if \(\alpha\) holds before it executes, then either \(\beta\) or \(\neg \beta\) must be true, and so either \(P_1\) or \(P_2\) executes, respectively, giving us \(\gamma\) in both cases.

The “While” rule is saying the following: suppose it is the case that \(\{\alpha \land \beta\}P\{\alpha\}\). This means that \(P\) is (partially) correct with respect to precondition \(\alpha \land \beta\) and postcondition \(\alpha\). Then the program “while \(\beta\) do \(P\)” is (partially) correct with respect to precondition \(\alpha \land \beta\) and postcondition \(\alpha \land \neg \beta\) because if \(\alpha\) holds before it executes, then either \(\beta\) holds in which case the while-loop executes once again, with \(\alpha \land \beta\) holding, and so \(\alpha\) still holds after \(P\) executes, or \(\beta\) is false, in which case \(\neg \beta\) is true and the loop terminates with \(\alpha \land \neg \beta\).

As an example, we verify which computes \(y = A \cdot B\). Note that in algorithm 1.13, which describes the program that computes \(y = A \cdot B\), we use “\(\leftarrow\)” instead of the usual “\(\rightarrow\)” since we are now proving the correctness of an actual program, rather than its representation in pseudo-code.

We want to show:
\[
\{B \geq 0\}\text{mult}(A,B)\{y = AB\}
\] (1.6)

Each pass through the while loop adds \(a\) to \(y\), but \(a \cdot b\) decreases by \(a\) because \(b\) is decremented by 1. Let the loop invariant be: \((y + (a \cdot b) = A \cdot B) \land b \geq 0\).

To save space, write \(tu\) instead of \(t \cdot u\). Let \(t \geq u\) abbreviate the \(\mathcal{L}_A\)-formula \(\exists x(t = u + x)\), and let \(t \leq u\) abbreviate \(u \geq t\).
Algorithm 1.13 \texttt{mult(A,B)}

\textbf{Pre-condition: } $B \geq 0$

\begin{align*}
\texttt{a} &= A; \\
\texttt{b} &= B; \\
\texttt{y} &= 0; \\
\texttt{while} &\, \texttt{b} \geq 0 \texttt{ do} \\
\texttt{y} &= \texttt{y} + \texttt{a}; \\
\texttt{b} &= \texttt{b} - 1;
\end{align*}

\textbf{end while}

\textbf{Post-condition: } $y = A \cdot B$

1 \{ $y + a(b - 1) = AB \land (b - 1) \geq 0 \}$ \texttt{b=b-1;} \{ $y + ab = AB \land b \geq 0 \}$ \texttt{assignment}

2 \{ $(y+a) + a(b-1) = AB \land (b-1) \geq 0 \}$ \texttt{y=y+a;} \{ $y + a(b - 1) = AB \land (b - 1) \geq 0 \}$ \texttt{assignment}

3 \{ $(y + ab = AB \land b - 1 \geq 0 \} \rightarrow ((y + a) + a(b - 1) = AB \land b - 1 \geq 0 \}$ \texttt{theorem}

4 \{ $(y + ab = AB \land b - 1 \geq 0 \} \texttt{y=y+a;} \{ y + a(b - 1) = AB \land b - 1 \geq 0 \}$ \texttt{consequence left} \texttt{2 and} \texttt{3}

5 \{ $(y + ab = AB \land b - 1 \geq 0 \} \texttt{y=y+a; b=b-1;} \{ y + ab = AB \land b \geq 0 \}$ \texttt{composition on} \texttt{4 and} \texttt{1}

6 \{ $(y + ab = AB) \land b \geq 0 \land b > 0 \rightarrow (y + ab = AB) \land b - 1 \geq 0 \}$ \texttt{theoerm}

7 \{ $(y + ab = AB) \land b \geq 0 \land b > 0 \} \texttt{y=y+a; b=b-1;} \{ y + ab = AB \land b \geq 0 \}$ \texttt{consequence left} \texttt{5 and} \texttt{6}

\texttt{while} \texttt{(b>0)}

8 \{ $(y+ab = AB) \land b \geq 0 \} \texttt{y=y+a; b=b-1;} \{ y + ab = AB \land b \geq 0 \lor \lnot (b > 0) \}$

\texttt{while on} \texttt{7}

9 \{ $(0 + ab = AB) \land b \geq 0 \} \texttt{y=0;} \{ (y + ab = AB) \land b \geq 0 \}$ \texttt{assignment}

\texttt{y=0;}

\texttt{while} \texttt{(b>0)}

10 \{ $(0 + ab = AB) \land b \geq 0 \} \texttt{y=y+a; b=b-1;} \{ y + ab = AB \land b \geq 0 \lor \lnot (b > 0) \}$

\texttt{composition on} \texttt{9 and} \texttt{8}

11 \{ $(0 + aB = AB) \land B \geq 0 \} \texttt{b=B;} \{ (0 + ab = AB) \land b \geq 0 \}$
assignment

\[
\begin{align*}
 b &= B; \\
 y &= 0; \\
 \text{while } (b > 0) \{ y + ab &= AB \land b \geq 0 \land \neg(b > 0) \} \\
 y &= y + a; \\
 b &= b - 1;
\end{align*}
\]

composition on 11 and 10

13 \{(0 + AB = AB) \land B \geq 0 \} a = A; \{(0 + aB = AB) \land B \geq 0 \}

assignment

14 \{(0 + AB = AB) \land B \geq 0 \} mult(A,B) \{y + ab = AB \land b \geq 0 \land \neg(b > 0)\}

composition on 13 and 12

15 \ B \geq 0 \rightarrow ((0 + AB = AB) \land B \geq 0) \ theorem

16 \ (y + ab = AB \land b \geq 0 \land \neg(b > 0)) \rightarrow y = AB \ theorem

17 \ {B \geq 0} \ mult(A,B) \{y + ab = AB \land b \geq 0 \land \neg(b > 0)\} \ consequence left on 15 and 14

18 \ {B \geq 0} \ mult(A,B) \{y = AB\} \ consequence right on 16 and 17

Problem 1.35. The following is a project, rather than an exercise. Give formal proofs of correctness of the division algorithm and Euclid’s algorithm (algorithms 1.1 and 1.2). To give a complete proof you will need to use Peano Arithmetic, which is a formalization of number theory—exactly what is needed for these two algorithms. The details of Peano Arithmetic are given in Appendix C.

1.4 Stable marriage

The method of “pairwise comparisons” was first described by Marquis de Condorcet in 1785. Today rankings based on pairwise comparisons are pervasive: scheduling of processes, online shopping and dating websites, to name just a few. We end this chapter with an elegant application known as the “stable marriage problem,” which has been used since the 1960s for the college admission process and for matching interns with hospitals.

An instance of the stable marriage problem of size \(n \) consists of two disjoint finite sets of equal size; a set of boys \(B = \{b_1, b_2, \ldots, b_n\} \), and a set
Fig. 1.4 A blocking pair: b and g prefer each other to their partners $p_M(b)$ and $p_M(g)$.

of girls $G = \{g_1, g_2, \ldots, g_n\}$. Let “$\prec_i$” denote the ranking of boy b_i: that is, $g \prec_i g'$ means that boy b_i prefers g over g'. Similarly, “\prec_j” denotes the ranking of girl g_j. Each boy b_i has such a ranking (linear ordering) \prec_i of G which reflects his preference for the girls that he wants to marry. Similarly each girl g_j has a ranking (linear ordering) \prec_j of B which reflects her preference for the boys she would like to marry.

A matching (or marriage) M is a 1-1 correspondence between B and G. We say that b and g are partners in M if they are matched in M and write $p_M(b) = g$ and also $p_M(g) = b$. A matching M is unstable if there is a pair (b, g) from $B \times G$ such that b and g are not partners in M but b prefers g to $p_M(b)$ and g prefers b to $p_M(g)$. Such a pair (b, g) is said to block the matching M and is called a blocking pair for M (see figure 1.4).

A matching M is stable if it contains no blocking pair.

We are going to present an algorithm due to Gale and Shapley ([Gale and Shapley (1962)]) that outputs a stable marriage for any input B, G, regardless of the ranking.

The matching M is produced in stages M_s so that b_t always has a partner at the end of stage s, where $s \geq t$. However, the partners of b_t do not get better, i.e., $p_{M_t}(b_t) \leq_t p_{M_{t+1}}(b_t) \leq_t \cdots$. On the other hand, for each $g \in G$, if g has a partner at stage t, then g will have a partner at each stage $s \geq t$ and the partners do not get worse, i.e., $p_{M_t}(g) \geq^t p_{M_{t+1}}(g) \geq^t \cdots$. Thus, as s increases, the partners of b_t become less preferable and the partners of g become more preferable.

At the end of stage s, assume that we have produced a matching

$$M_s = \{(b_1, g_{1,s}), \ldots, (b_s, g_{s,s})\},$$

where the notation $g_{i,s}$ means that $g_{i,s}$ is the partner of boy b_i after the end of stage s.

We will say that partners in M_s are engaged. The idea is that at stage $s+1$, b_{s+1} will try to get a partner by proposing to the girls in G in his order of preference. When b_{s+1} proposes to a girl g_j, g_j accepts his proposal if
either g_j is not currently engaged or is currently engaged to a less preferable boy b, i.e., $b_{s+1} < b$. In the case where g_j prefers b_{s+1} over her current partner b, then g_j breaks off the engagement with b and b then has to search for a new partner.

Algorithm 1.14 Gale-Shapley

Stage 1: At stage 1, b_1 chooses the first girl g in his preference list and we set $M_1 = \{(b_1, g)\}$.

Stage $s + 1$:

$M \leftarrow M_s$

$b^* \leftarrow b_{s+1}$

Then b^* proposes to the girls in order of his preference until one accepts; girl g will accept the proposal as long as she is either not engaged or prefers b^* to her current partner $p_M(g)$.

Then we add (b^*, g) to M and proceed according to one of the following two cases:

(i) If g was not engaged, then we terminate the procedure and set $M_{s+1} \leftarrow M \cup \{(b^*, g)\}$.

(ii) If g was engaged to b, then we set $M \leftarrow (M - \{(b, g)\}) \cup \{(b^*, g)\}$

and repeat.

Problem 1.36. Show that each b need propose at most once to each g.

From problem 1.36 we see that we can make each boy keep a bookmark on his list of preference, and this bookmark is only moving forward. When a boy’s turn to choose comes, he starts proposing from the point where his bookmark is, and by the time he is done, his bookmark moved only forward. Note that at stage $s + 1$ each boy’s bookmark cannot have moved beyond the girl number s on the list without choosing someone (after stage s only s girls are engaged). As the boys take turns, each boy’s bookmark is advancing, so some boy’s bookmark (among the boys in $\{b_1, \ldots, b_{s+1}\}$) will advance eventually to a point where he must choose a girl.

The discussion in the above paragraph shows that stage $s + 1$ in algorithm 1.14 must end. The concern here was that case (ii) of stage $s + 1$ might end up being circular. But the fact that the bookmarks are advancing shows that this is not possible.
Furthermore, this gives an upper bound of \((s + 1)^2\) steps at stage \((s + 1)\) in the procedure. This means that there are \(n\) stages, and each stage takes \(O(n^2)\) steps, and hence algorithm 1.14 takes \(O(n^3)\) steps altogether. The question, of course, is what do we mean by a step? Computers operate on binary strings, yet here the implicit assumption is that we compare numbers and access the lists of preferences in a single step. But the cost of these operations is negligible when compared to our idealized running time, and so we allow ourselves this poetic license to bound the overall running time.

Problem 1.37. Show that there is exactly one girl that was not engaged at stage \(s\) but is engaged at stage \((s + 1)\) and that, for each girl \(g_j\) that is engaged in \(M_s\), \(g_j\) will be engaged in \(M_{s+1}\) and that \(p_{M_{s+1}}(g_j) < p_{M_s}(g_j)\). (Thus, once \(g_j\) becomes engaged, she will remain engaged and her partners will only gain in preference as the stages proceed.)

Problem 1.38. Suppose that \(|B| = |G| = n\). Show that at the end of stage \(n\), \(M_n\) will be a stable marriage.

We say that a matching \((b, g)\) is feasible if there exists a stable matching in which \(b, g\) are partners. We say that a matching is boy-optimal if every boy is paired with his highest ranked feasible partner. We say that a matching is boy-pessimal if every boy is paired with his lowest ranking feasible partner. Similarly, we define girl-optimal/pessimal.

Problem 1.39. Show that our version of the algorithm produces a boy-optimal and girl-pessimal stable matching.

Problem 1.40. Implement the stable marriage problem algorithm in Python. Let the input be given as a text file containing, on each line, the preference list for each boy and girl.

1.5 Answers to selected problems

Problem 1.2. Basis case: \(n = 1\), then \(1^3 = 1^2\). For the induction step:

\[
(1 + 2 + 3 + \cdots + n + (n + 1))^2 \\
= (1 + 2 + 3 + \cdots + n)^2 + 2(1 + 2 + 3 + \cdots + n)(n + 1) + (n + 1)^2
\]
and by the induction hypothesis,
\[
= (1^3 + 2^3 + 3^3 + \cdots + n^3) + 2(1 + 2 + 3 + \cdots + n)(n + 1) + (n + 1)^2
\]
\[
= (1^3 + 2^3 + 3^3 + \cdots + n^3) + 2\frac{n(n + 1)}{2}(n + 1) + (n + 1)^2
\]
\[
= (1^3 + 2^3 + 3^3 + \cdots + n^3) + n(n + 1)^2 + (n + 1)^2
\]
\[
= (1^3 + 2^3 + 3^3 + \cdots + n^3) + (n + 1)^3
\]

Problem 1.3. It is important to interpret the statement of the problem correctly: when it says that one square is missing, it means that any square may be missing. So the basis case is: given a 2×2 square, there are four possible ways for a square to be missing; but in each case, the remaining squares form an “L.” These four possibilities are drawn in figure 1.5.

![Fig. 1.5 The four different “L” shapes.](image)

Suppose the claim holds for n, and consider a square of size $2^{n+1} \times 2^{n+1}$. Divide it into four quadrants of equal size. No matter which square we choose to be missing, it will be in one of the four quadrants; that quadrant can be filled with “L” shapes (i.e., shapes of the form given by figure 1.5) by induction hypothesis. As to the remaining three quadrants, put an “L” in them in such a way that it straddles all three of them (the “L” wraps around the center staying in those three quadrants). The remaining squares of each quadrant can now be filled with “L” shapes by induction hypothesis.

Problem 1.4. Since $\forall n (\mathcal{P}(n) \rightarrow \mathcal{P}(n+1)) \rightarrow (\forall n \geq k)(\mathcal{P}(n) \rightarrow \mathcal{P}(n+1))$, then (1.2) \Rightarrow (1.2’). On the other hand, (1.2’) $\not\Rightarrow$ (1.2).

Problem 1.5. The basis case is $n = 1$, and it is immediate. For the induction step, assume the equality holds for exponent n, and show that it holds for exponent $n + 1$:

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^n
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
f_{n+1} & f_n \\
f_n & f_{n-1}
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
f_{n+1} + f_n & f_n + f_{n+1} \\
f_n & f_{n-1}
\end{pmatrix}
\]

The right-most matrix can be simplified using the definition of Fibonacci numbers to be as desired.

Problem 1.7. $m|n$ iff $n = km$, so show that $f_m | f_{km}$ by induction on k. If $k = 1$, there is nothing to prove. Otherwise, $f_{(k+1)m} = f_{km+m}$. Now, using a separate inductive argument, show that for $y \geq 1$, $f_{x+y} =$
\(f_yf_{x+1} + f_{y-1}f_x\), and finish the proof. To show this last statement, let \(y = 1\), and note that \(f_yf_{x+1} + f_{y-1}f_x = f_1f_{x+1} + f_0f_x = f_{x+1}\). Assume now that \(f_{x+y} = f_yf_{x+1} + f_{y-1}f_x\) holds. Consider

\[f_{x+(y+1)} = f_{(x+y)+1} = f_{(x+y)} + f_{(x+y)-1} = f_{(x+y)} + f_{x+(y-1)} = (f_yf_{x+1} + f_{y-1}f_x) + (f_{y-1}f_{x+1} + f_{y-2}f_x) = f_{x+1}(f_y + f_{y-1}) + f_x(f_{y-1} + f_{y-2}) = f_{x+1}f_{y+1} + f_xf_y.\]

Problem 1.8. Note that this is almost the *Fundamental Theorem of Arithmetic*; what is missing is the fact that up to reordering of primes this representation is unique. The proof of this can be found in appendix A, theorem A.2.

Problem 1.9. Let our assertion \(P(n)\) be: the minimal number of breaks to break up a chocolate bar of \(n\) squares is \((n - 1)\). Note that this says that \((n - 1)\) breaks are sufficient, and \((n - 2)\) are not. Basis case: only one square requires no breaks. Induction step: Suppose that we have \(m+1\) squares. No matter how we break the bar into two smaller pieces of \(a\) and \(b\) squares each, \(a + b = m + 1\).

By induction hypothesis, the “a” piece requires \(a - 1\) breaks, and the “b” piece requires \(b - 1\) breaks, so together the number of breaks is

\[(a - 1) + (b - 1) + 1 = a + b - 1 = m + 1 - 1 = m,\]

and we are done. Note that the 1 in the box comes from the initial break to divide the chocolate bar into the “a” and the “b” pieces.

So the “boring” way of breaking up the chocolate (first into rows, and then each row separately into pieces) is in fact optimal.

Problem 1.10. Let IP be:

\[P(0) \land (\forall n)(P(n) \rightarrow P(n+1)) \rightarrow (\forall m)P(m)\]

(\(n, m\) range over natural numbers), and let LNP: *Every non-empty subset of the natural numbers has a least element*. These two principles are equivalent, in the sense that one can be shown from the other. Indeed:

LNP\(\rightarrow\)IP: Suppose we have \([P(0) \land (\forall n)(P(n) \rightarrow P(n+1))]\), but that it is not the case that \((\forall m)P(m)\). Then, the set \(S\) of \(m\)’s for which \(P(m)\) is false is non-empty. By the LNP we know that \(S\) has a least element. We know this element is not 0, as \(P(0)\) was assumed. So this element can be expressed as \(n + 1\) for some natural number \(n\). But since \(n + 1\) is the least such number, \(P(n)\) must hold. This is a contradiction as we assumed that \((\forall n)(P(n) \rightarrow P(n+1))\), and here we have an \(n\) such that \(P(n)\) but not \(P(n+1)\).
Preliminaries

IP⇒LNP: Suppose that S is a non-empty subset of the natural numbers. Suppose that it does not have a least element; let $P(n)$ be the following assertion “all elements up to and including n are not in S.” We know that $P(0)$ must be true, for otherwise 0 would be in S, and it would then be the least element (by definition of 0). Suppose $P(n)$ is true (so none of $\{0, 1, 2, \ldots, n\}$ is in S). Suppose $P(n)$ were false: then $n + 1$ would necessarily be in S (as we know that none of $\{0, 1, 2, \ldots, n\}$ is in S), and thereby $n + 1$ would be the smallest element in S. So we have shown $[P(0) \land (\forall n)(P(n) \rightarrow P(n + 1))]$. By IP we can therefore conclude that $(\forall n)P(n)$. But this means that S is empty. Contradiction. Thus S must have a least element.

IP⇒CIP: For this direction we use the LNP which we just showed equivalent to the IP. Suppose that we have IP; assume that $P(0)$ and $(\forall n)((\forall i \leq n)P(i) \rightarrow P(n + 1))$. We want to show that $(\forall n)P(n)$, so we prove this with the IP: the basis case, $P(0)$, is given. To show $(\forall j)(P(j) \rightarrow P(j + 1))$ suppose that it does not hold; then there exists a j such that $P(j)$ and $\neg P(j + 1)$; let j be the smallest such j; one exists by the LNP, and $j \neq 0$ by what is given. So $P(0), P(1), P(2), \ldots, P(j)$ but $\neg P(j + 1)$. But this contradicts $(\forall n)((\forall i \leq n)P(i) \rightarrow P(n + 1))$, and so it is not possible. Hence $(\forall j)(P(j) \rightarrow P(j + 1))$ and so by the IP we have $(\forall n)P(n)$ and hence we have the CIP.

The last direction, CIP⇒IP, follows directly from the fact that CIP has a “stronger” induction step.

Problem 1.11. We use the example in figure 1.1. Suppose that we want to obtain the tree from the infix (2164735) and prefix (1234675) encodings: from the prefix encoding we know that 1 is the root, and thus from the infix encoding we know that the left sub-tree has the infix encoding 2, and so prefix encoding 2, and the right sub-tree has the infix encoding 64735 and so prefix encoding 34675, and we proceed recursively.

Problem 1.13. Consider the following invariant: the sum S of the numbers currently in the set is odd. Now we prove that this invariant holds. Basis case: $S = 1 + 2 + \cdots + 2n = n(2n + 1)$ which is odd. Induction step: assume S is odd, let S' be the result of one more iteration, so

$$S' = S + |a - b| - a - b = S - 2 \min(a, b),$$

and since $2 \min(a, b)$ is even, and S was odd by the induction hypothesis, it follows that S' must be odd as well. At the end, when there is just one number left, say x, $S = x$, so x is odd.

Problem 1.14. To solve this problem we must provide both an algorithm and an invariant for it. The algorithm works as follows: initially divide
the club into any two groups. Let H be the total sum of enemies that each member has in his own group. Now repeat the following loop: while there is an m which has at least two enemies in his own group, move m to the other group (where m must have at most one enemy). Thus, when m switches houses, H decreases. Here the invariant is “H decreases monotonically.” Now we know that a sequence of positive integers cannot decrease for ever, so when H reaches its absolute minimum, we obtain the required distribution.

Problem 1.15. At first, arrange the guests in any way; let H be the number of neighboring hostile pairs. We find an algorithm that reduces H whenever $H > 0$. Suppose $H > 0$, and let (A, B) be a hostile couple, sitting side-by-side, in the clockwise order A, B. Traverse the table, clockwise, until we find another couple (A', B') such that A, A' and B, B' are friends. Such a couple must exist: there are $2n - 2 - 1 = 2n - 3$ candidates for A' (these are all the people sitting clockwise after B, which have a neighbor sitting next to them, again clockwise, and that neighbor is neither A nor B). As A has at least n friends (among people other than itself), out of these $2n - 3$ candidates, at least $n - 1$ of them are friends of A. If each of these friends had an enemy of B sitting next to it (again, going clockwise), then B would have at least n enemies, which is not possible, so there must be an A' friends with A so that the neighbor of A' (clockwise) is B' and B' is a friend of B; see figure 1.6.

Note that when $n = 1$ no one has enemies, and so this analysis is applicable when $n \geq 2$, in which case $2n - 3 \geq 1$.

Now the situation around the table is ... A, B, \ldots, A', B'. Reverse everyone in the box (i.e., mirror image the box), to reduce H by 1. Keep repeating this procedure while $H > 0$; eventually $H = 0$ (by the LNP), at which point there are no neighbors that dislike each other.

$A, B, c_1, c_2, \ldots, c_{2n-3}, c_{2n-2}$

Fig. 1.6 List of guests sitting around the table, in clockwise order, starting at A. We are interested in friends of A among $c_1, c_2, \ldots, c_{2n-3}$, to make sure that there is a neighbor to the right, and that neighbor is not A or B; of course, the table wraps around at c_{2n-2}, so the next neighbor, clockwise, of c_{2n-2} is A. As A has at most $n - 1$ enemies, A has at least n friends (not counting itself; self-love does not count as friendship). Those n friends of A are among the c’s, but if we exclude c_{2n-2} it follows that A has at least $n - 1$ friends among $c_1, c_2, \ldots, c_{2n-3}$. If the clockwise neighbor of c_i, $1 \leq i \leq 2n-3$, i.e., c_{i+1} was in each case an enemy of B, then, as B already has an enemy of A, it would follow that B has n enemies, which is not possible.
Problem 1.16. We partition the participants into the set E of even persons and the set O of odd persons. We observe that, during the hand shaking ceremony, the set O cannot change its parity. Indeed, if two odd persons shake hands, O decreases by 2. If two even persons shake hands, O increases by 2, and, if an even and an odd person shake hands, $|O|$ does not change. Since, initially, $|O| = 0$, the parity of the set is preserved.

Problem 1.18. First observe that if u divides x and y, then for any $a, b \in \mathbb{Z}$ u also divides $ax + by$. Thus, if $i \mid m$ and $i \mid n$, then

$$i((m - qn) = r = \text{rem}(m, n).$$

So i divides both n and $\text{rem}(m, n)$, and so i has to be bounded by their greatest common divisor, i.e., $i \leq \gcd(n, \text{rem}(m, n))$. As this is true for every i, it is in particular true for $i = \gcd(m, n)$; thus $\gcd(m, n) \leq \gcd(n, \text{rem}(m, n))$. Conversely, suppose that $i \mid n$ and $i \mid \text{rem}(m, n)$. Then $i \mid m = qn + r$, so $i \leq \gcd(m, n)$, and again, $\gcd(n, \text{rem}(m, n))$ meets the condition of being such an i, so we have $\gcd(n, \text{rem}(m, n)) \leq \gcd(m, n)$.

Both inequalities taken together give us $\gcd(m, n) = \gcd(n, \text{rem}(m, n))$.

Problem 1.19. Let r_i be r after the i-th iteration of the loop. Note that $r_0 = \text{rem}(m, n) = \text{rem}(a, b) \geq 0$, and in fact every $r_i \geq 0$ by definition of remainder. Furthermore:

$$r_{i+1} = \text{rem}(m', n') = \text{rem}(n, r) = \text{rem}(n, \text{rem}(m, n)) = \text{rem}(n, r_i) < r_i,$$

and so we have a decreasing, and yet non-negative, sequence of numbers; by the LNP this must terminate.

Problem 1.20. When $m < n$ then $\text{rem}(m, n) = m$, and so $m' = n$ and $n' = m$. Thus, when $m < n$ we execute one iteration of the loop only to swap m and n. In order to be more efficient, we could add line 2.5 in algorithm 1.2 saying if $(m < n)$ then swap(m, n).

Problem 1.21. (a) We show that if $d = \gcd(a, b)$, then there exist u, v such that $au + bv = d$. Let $S = \{ax + by | ax + by > 0\}$; clearly $S \neq \emptyset$. By LNP there exists a least $g \in S$. We show that $g = d$. Let $a = q \cdot g + r$, $0 \leq r < g$. Suppose that $r > 0$; then

$$r = a - q \cdot g = a - q(ax_0 + by_0) = a(1 - qx_0) + b(-gy_0).$$

Thus, $r \in S$, but $r < g$—contradiction. So $r = 0$, and so $g \mid a$, and a similar argument shows that $g \mid b$. It remains to show that g is greater than any other common divisor of a, b. Suppose $c \mid a$ and $c \mid b$, so $c|(ax_0 + by_0)$, and so $c \mid g$, which means that $c \leq g$. Thus $g = \gcd(a, b) = d$.

(b) Euclid’s extended algorithm is algorithm 1.15. Note that in the algorithm, the assignments in line 1 and line 8 are evaluated left to right.
Algorithm 1.15 Extended Euclid’s algorithm.

Pre-condition: \(m > 0, n > 0 \)

1: \(a \leftarrow 0; x \leftarrow 1; b \leftarrow 1; y \leftarrow 0; c \leftarrow m; d \leftarrow n \)
2: loop
3: \(q \leftarrow \text{div}(c, d) \)
4: \(r \leftarrow \text{rem}(c, d) \)
5: if \(r = 0 \) then
6: \quad stop
7: end if
8: \(c \leftarrow d; d \leftarrow r; t \leftarrow x; x \leftarrow a; a \leftarrow t - qa; t \leftarrow y; y \leftarrow b; b \leftarrow t - qb \)
9: end loop

Post-condition: \(am + bn = d = \gcd(m, n) \)

We can prove the correctness of algorithm 1.15 by using the following loop invariant which consists of four assertions:

\[
\begin{align*}
 am + bn &= d, \\
 xm + yn &= c, \\
 d &> 0, \\
 \gcd(c, d) &= \gcd(m, n). \\
\end{align*}
\]

(LI)

The basis case:

\[
\begin{align*}
 am + bn &= 0 \cdot m + 1 \cdot n = n = d \\
 xm + yn &= 1 \cdot m + 0 \cdot n = m = c
\end{align*}
\]

both by line 1. Then \(d = n > 0 \) by pre-condition, and \(\gcd(c, d) = \gcd(m, n) \) by line 1. For the induction step assume that the “primed” variables are the result of one more full iteration of the loop on the “un-primed” variables:

\[
\begin{align*}
 a'm + b'n &= (x - qa)m + (y - qb)n \\
 &= (xm - yn) - q(am + bn) \\
 &= c - qd \\
 &= r \\
 &= d' \\
\end{align*}
\]

by line 8, by induction hypothesis, by lines 3 and 4, by line 8. Then \(x'm = y'n = am + bn = d = c' \) where the first equality is by line 8, the second by the induction hypothesis, and the third by line 8. Also, \(d' = r \) by line 8, and the algorithm would stop in line 5 if \(r = 0 \); on the other hand, from line 4, \(r = \text{rem}(c, d) \geq 0 \), so \(r > 0 \) and so \(d' > 0 \). Finally,

\[
\begin{align*}
 \gcd(c', d') &= \gcd(d, r) \\
 &= \gcd(d, \text{rem}(c, d)) \\
 &= \gcd(c, d) \\
 &= \gcd(m, n) \
\end{align*}
\]

by line 8, by line 4, see problem 1.18, by induction hypothesis.
For partial correctness it is enough to show that if the algorithm terminates, the post-condition holds. If the algorithm terminates, then \(r = 0 \), so \(\text{rem}(c, d) = 0 \) and \(\gcd(c, d) = \gcd(d, 0) = d \). On the other hand, by (LI), we have that \(am + bn = d \), so \(am + bn = d = \gcd(c, d) \) and \(\gcd(c, d) = \gcd(m, n) \).

(c) On pp. 292–293 in [Delfs and Knebl (2007)] there is a nice analysis of their version of the algorithm. They bound the running time in terms of Fibonacci numbers, and obtain the desired bound on the running time.

Problem 1.23. For partial correctness of algorithm 1.3, we show that if the pre-condition holds, and if the algorithm terminates, then the post-condition will hold. So assume the pre-condition, and suppose first that \(A \) is not a palindrome. Then there exists a smallest \(i_0 \) (there exists one, and so by the LNP there exists a smallest one) such that \(A[i_0] \neq A[n - i_0 + 1] \), and so, after the first \(i_0 - 1 \) iteration of the while-loop, we know from the loop invariant that \(i = (i_0 - 1) + 1 = i_0 \), and so line 4 is executed and the algorithm returns \(F \). Therefore, “\(A \) not a palindrome” \(\Rightarrow \) “return \(F \).”

Suppose now that \(A \) is a palindrome. Then line 4 is never executed (as no such \(i_0 \) exists), and so after the \(k = \lfloor n/2 \rfloor \)-th iteration of the while-loop, we know from the loop invariant that \(i = \lfloor n/2 \rfloor + 1 \) and so the while-loop is not executed any more, and the algorithm moves on to line 8, and returns \(T \). Therefore, “\(A \) is a palindrome” \(\Rightarrow \) “return \(T \).”

Therefore, the post-condition, “return \(T \) iff \(A \) is a palindrome,” holds. Note that we have only used part of the loop invariant, that is we used the fact that after the \(k \)-th iteration, \(i = k + 1 \); it still holds that after the \(k \)-th iteration, for \(1 \leq j \leq k \), \(A[j] = A[n - j + 1] \), but we do not need this fact in the above proof.

To show that the algorithm does actually terminates, let \(d_i = \lfloor n/2 \rfloor - i \).

By the pre-condition, we know that \(n \geq 1 \). The sequence \(d_1, d_2, d_3, \ldots \) is a decreasing sequence of positive integers (because \(i \leq \lfloor n/2 \rfloor \)), so by the LNP it is finite, and so the loop terminates.

Problem 1.24. It is very easy once you realize that in Python the slice \([::−1]\) generates the reverse string. So, to check whether string \(s \) is a palindrome, all we do is write \(s == s[::-1] \).

Problem 1.25. The solution is given by algorithm 1.16.

Let the loop invariant be: “\(x \) is a power of 2 iff \(n \) is a power of 2.”

We show the loop invariant by induction on the number of iterations of the main loop. Basis case: zero iterations, and since \(x \leftarrow n \), \(x = n \), so obviously \(x \) is a power of 2 iff \(n \) is a power of 2. For the induction step, note that if we ever get to update \(x \), we have \(x' = x/2 \), and clearly \(x' \) is a
Algorithm 1.16 Powers of 2.

Pre-condition: $n \geq 1$

$x \leftarrow n$

while $(x > 1)$ do

\hspace{1em} if $(2 | x)$ then

\hspace{2em} $x \leftarrow x/2$

\hspace{1em} else

\hspace{2em} stop and return “no”

end if

end while

return “yes”

Post-condition: “yes” \iff n is a power of 2

Problem 1.26. Algorithm 1.4 computes the product of m and n, that is, the returned $z = m \cdot n$. A good loop invariant is $x \cdot y + z = m \cdot n$.

Problem 1.28. We are going to prove a loop invariant on the outer loop of algorithm 1.6, that is, we are going to prove a loop invariant on the for-loop (indexed on i) that starts on line 2 and ends on line 7. Our invariant consists of two parts: after the k-th iteration of the loop, the following two statements hold true:

1. the set $\{v_1^*, \ldots, v_{k+1}^*\}$ is orthogonal, and
2. $\text{span}\{v_1, \ldots, v_{k+1}\} = \text{span}\{v_1^*, \ldots, v_{k+1}^*\}$.

Basis case: after zero iterations of the for-loop, that is, before the for-loop is ever executed, we have, from line 1 of the algorithm, that $v_1^* \leftarrow v_1$, and so the first statement is true because $\{v_1^*\}$ is orthogonal (a set consisting of a single non-zero vector is always orthogonal—and $v_1^* = v_1 \neq 0$ because the assumption (i.e., pre-condition) is that $\{v_1, \ldots, v_n\}$ is linearly independent, and so none of these vectors can be zero), and the second statement also holds trivially since if $v_1^* = v_1$ then $\text{span}\{v_1\} = \text{span}\{v_1^*\}$.

Induction Step: Suppose that the two conditions hold after the first k iterations of the loop; we are going to show that they continue to hold after
the $k + 1$ iteration. Consider:

$$v^*_k = v_{k+2} - \sum_{j=1}^{k+1} \mu_{(k+1)j} v^*_j,$$

which we obtain directly from line 6 of the algorithm; note that the outer for-loop is indexed on i which goes from 2 to n, so after the k-th execution of line 2, for $k \geq 1$, the value of the index i is $k + 1$. We show the first statement, i.e., that $\{v^*_1, \ldots, v^*_k\}$ are orthogonal. Since, by induction hypothesis, we know that $\{v^*_1, \ldots, v^*_k\}$ are already orthogonal, it is enough to show that for $1 \leq l \leq k + 1, v^*_l \cdot v^*_{k+2} = 0$, which we do next:

$$v^*_l \cdot v^*_{k+2} = v^*_l \left(v_{k+2} - \sum_{j=1}^{k+1} \mu_{(k+2)j} v^*_j \right)$$

$$= (v^*_l \cdot v_{k+2}) - \sum_{j=1}^{k+1} \mu_{(k+2)j} (v^*_l \cdot v^*_j)$$

and since $v^*_l \cdot v^*_j = 0$ unless $l = j$, we have:

$$= (v^*_l \cdot v_{k+2}) - \mu_{(k+2)j} (v^*_l \cdot v^*_j)$$

and using line 4 of the algorithm we write:

$$= (v^*_l \cdot v_{k+2}) - \frac{v_{k+2} \cdot v^*_l}{\|v^*_l\|^2} (v^*_l \cdot v^*_l) = 0$$

where we have used the fact that $v_l \cdot v_l = \|v_l\|^2$ and that $v^*_l \cdot v_{k+2} = v_{k+2} \cdot v^*_l$.

For the second statement of the loop invariant we need to show that

$$\text{span}\{v_1, \ldots, v_{k+2}\} = \text{span}\{v^*_1, \ldots, v^*_{k+2}\}, \quad (1.7)$$

assuming, by the induction hypothesis, that $\text{span}\{v_1, \ldots, v_{k+1}\} = \text{span}\{v^*_1, \ldots, v^*_{k+1}\}$. The argument will be based on line 6 of the algorithm, which provides us with the following equality:

$$v^*_{k+2} = v_{k+2} - \sum_{j=1}^{k+1} \mu_{(k+2)j} v^*_j. \quad (1.8)$$

Given the induction hypothesis, to show (1.7) we need only show the following two things:

1. $v_{k+2} \in \text{span}\{v^*_1, \ldots, v^*_{k+2}\}$, and
2. $v^*_{k+2} \in \text{span}\{v_1, \ldots, v_{k+2}\}$.
Using (1.8) we obtain immediately that
\[v_{k+2} = v_{k+2}^\ast + \sum_{j=1}^{k+1} \mu_{(k+2)j} v_j^\ast \]
and so we have (1). To show (2) we note that
\[
\text{span}\{v_1, \ldots, v_{k+2}\} = \text{span}\{v_1^\ast, \ldots, v_{k+1}^\ast, v_{k+2}\}
\]
by the induction hypothesis, and so we have what we need directly from (1.8).

Finally, note that we never divide by zero in line 4 of the algorithm because we always divide by \(\|v_j^\ast\| \), and the only way for the norm to be zero is if the vector itself, \(v_j^\ast \), is zero. But we know from the post-condition that \(\{v_1^\ast, \ldots, v_n^\ast\} \) is a basis, and so these vectors must be linearly independent, and so none of them can be zero.

Problem 1.30. A reference for this algorithm can be found in [Hoffstein et al. (2008)] in §6.12.1. Also [von zur Gathen and Gerhard (1999)], §16.2, gives a treatment of the algorithm in higher dimensions.

Let \(p = v_1 \cdot v_2 / \|v_1\|^2 \), and keep the following relationship in mind:
\[
[p] = [p + \frac{1}{2}] = m \in \mathbb{Z} \iff p \in [m - \frac{1}{2}, m + \frac{1}{2}) \subseteq \mathbb{R},
\]
where, following standard calculus terminology, the set \([a, b)\), for \(a, b \in \mathbb{R} \), denotes the set of all \(x \in \mathbb{R} \) such that \(a \leq x < b \).

We now give a proof of termination. Suppose first that \(|p| = \frac{1}{2} \). If \(p = -\frac{1}{2} \), then \(m = 0 \) and the algorithm stops. If \(p = \frac{1}{2} \), then \(m = 1 \), which means that we go through the loop one more time with \(v_1' = v_1 \) and \(\|v_2'\| = \|v_2 - v_1\| = \|v_2\| \), and, more importantly, in the next round \(p = -\frac{1}{2} \), and again the algorithm terminates.

Fig. 1.7 The projection of \(v_2 \), given as \(\vec{AE} \), onto \(v_1 \), given as \(\vec{AB} \). The resulting vector is \(\vec{AC} = v_2 - pv_1 \), where \(p = v_1 \cdot v_2 / \|v_1\|^2 \). Letting \(m = |p| \), the vector \(v_2 - mv_1 \), is given by \(\vec{DE} \) or \(\vec{D'E} \), depending on whether \(m < p \) or not, respectively. Of course, \(\vec{D}' = C = D \) when \(p = m \).
If $p = m$, i.e., p was an integer to begin with (giving $\vec{CE} = D\vec{E} = D\vec{E}$ in figure 1.7), then simply by the Pythagorean theorem $|\vec{CE}|$ has to be shorter than $|\vec{AE}|$ (as v_1,v_2 are non-zero, as $m \neq 0$).

So we may assume that $|p| \neq \frac{1}{2}$ and $p \neq m$. The two cases where $m < p$, giving D', or $m > p$, giving D, are symmetric, and so we treat only the latter case. It must be that $|p| > \frac{1}{2}$ for otherwise m would have been zero, resulting in termination. Note that $|\vec{CD}| \leq \frac{1}{2}|\vec{AB}|$, because $AD = mA\vec{B}$.

From this and the Pythagorean theorem we know that:

$$|\vec{AE}|^2 = |\vec{AC}|^2 + |\vec{CE}|^2 = p^2|\vec{AB}|^2 + |\vec{CE}|^2$$

$$|\vec{DE}|^2 = |\vec{CD}|^2 + |\vec{CE}|^2 \leq p^2|\vec{AB}|^2 + |\vec{CE}|^2$$

and so $|\vec{AE}|^2 - |\vec{DE}|^2 \geq (p^2 - \frac{1}{4})|\vec{AB}|^2$, and, as we already noted, if the algorithm does not end in line 6 that means that $|p| > \frac{1}{2}$, and so it follows that $|\vec{AE}| > |\vec{DE}|$, that is, v_2 is longer than $v_2 - mv_1$, and so the new v_2 (line 9) is shorter than the old one.

Let v_1', v_2' be the two vectors resulting in one iteration of the loop from v_1, v_2. As we noted above, when $|p| = \frac{1}{2}$ termination comes in one or two steps. Otherwise, $|v_1'| + |v_2'| < |v_1| + |v_2|$, and as there are finitely many pairs of points in a lattice bounded by the sum of the two norms of the original vectors, and the algorithm ends when one of the vectors becomes zero, this procedure must end in finitely many steps.

Problem 1.32. Let $S \subseteq \mathbb{Z} \times \mathbb{Z}$ be the set consisting precisely of those pairs of integers (x, y) such that $x \geq y$ and $x - y$ is even. We are going to prove that S is the domain of definition of F. First, if $x < y$ then $x \neq y$ and so we go on to compute $F(x, F(x - 1, y + 1))$, and now we must compute $F(x - 1, y + 1)$; but if $x < y$, then clearly $x - 1 < y + 1$; this condition is preserved, and so we end up having to compute $F(x - i, y + i)$ for all i, and so this recursion never “bottoms out.” Suppose that $x - y$ is odd. Then $x \neq y$ (as 0 is even!), so again we go on to $F(x, F(x - 1, y + 1))$; if $x - y$ is odd, so is $(x - 1) - (y + 1) = x - y - 2$. Again we end up having to compute $F(x - i, y + i)$ for all i, and so the recursion never terminates. Clearly, all the pairs in S^c are not in the domain of definition of F.

Suppose now that $(x, y) \in S$. Then $x \geq y$ and $x - y$ is even; thus, $x - y = 2i$ for some $i \geq 0$. We show, by induction on i, that the algorithm terminates on such (x, y) and outputs $x + 1$. Basis case: $i = 0$, so $x = y$, and so the algorithm returns $y + 1$ which is $x + 1$. Suppose now that $x - y = 2(i + 1)$. Then $x \neq y$, and so we compute $F(x, F(x - 1, y + 1))$. But

$$(x - 1) - (y + 1) = x - y - 2 = 2(i + 1) - 2 = 2i,$$
for \(i \geq 0 \), and so by induction \(F(x-1, y+1) \) terminates and outputs \((x-1) + 1 = x \). So now we must compute \(F(x, x) \) which is just \(x + 1 \), and we are done.

Problem 1.33. We show that \(f_1 \) is a fixed point of algorithm 1.9. Recall that in problem 1.32 we showed that the domain of definition of \(F \), the function computed by algorithm 1.9, is \(S = \{(x, y) : x - y = 2i, i \geq 0\} \). Now we show that if we replace \(F \) in algorithm 1.9 by \(f_1 \), the new algorithm, which is algorithm 1.17, still computes \(F \) albeit not recursively (as \(f_1 \) is defined by algorithm 1.10 which is not recursive).

Algorithm 1.17 Algorithm 1.9 with \(F \) replaced by \(f_1 \).

1: if \(x = y \) then
2: \quad return \(y + 1 \)
3: else
4: \quad \(f_1(x, f_1(x-1, y+1)) \)
5: end if

We proceed as follows: if \((x, y) \in S \), then \(x - y = 2i \) with \(i \geq 0 \). On such \((x, y) \) we know, from problem 1.32, that \(F(x, y) = x + 1 \). Now consider the output of algorithm 1.17 on such a pair \((x, y) \). If \(i = 0 \), then it returns \(y + 1 = x + 1 \), so we are done. If \(i > 0 \), then it computes

\[f_1(x, f_1(x-1, y+1)) = f_1(x, x) = x + 1, \]

and we are done. To see why \(f_1(x-1, y+1) = x \) notice that there are two cases: first, if \(x - 1 = y + 1 \), then the algorithm for \(f_1 \) (algorithm 1.10) returns \((y+1) + 1 = (x-1) + 1 = x \). Second, if \(x-1 > y + 1 \) (and that is the only other possibility), algorithm 1.10 returns \((x-1) + 1 = x \) as well.

Problem 1.36. After \(b \) proposed to \(g \) for the first time, whether this proposal was successful or not, the partners of \(g \) could have only gotten better. Thus, there is no need for \(b \) to try again.

Problem 1.37. \(b_{s+1} \) proposes to the girls according to his list of preference: a \(g \) ends up accepting, and if the \(g \) who accepted \(b_{s+1} \) was free, she is the new one with a partner. Otherwise, some \(b^* \in \{b_1, \ldots, b_s\} \) became disengaged, and we repeat the same argument. The \(g \)'s disengage only if a better \(b \) proposes, so it is true that \(p_{M_{s+1}}(g_j) < p_{M_s}(g_j) \).

Problem 1.38. Suppose that we have a blocking pair \(\{b, g\} \) (meaning that \(\{(b, g'), (b', g)\} \subseteq M_n \), but \(b \) prefers \(g \) to \(g' \), and \(g \) prefers \(b \) to \(b' \)). Either \(b \) came after \(b' \) or before. If \(b \) came before \(b' \), then \(g \) would have been with \(b \) or someone better when \(b' \) came around, so \(g \) would not have become
engaged to b'. On the other hand, since (b', g) is a pair, no better offer has been made to g after the offer of b', so b could not have come after b'. In either case we get an impossibility, and so there is no blocking pair $\{b, g\}$.

Problem 1.39. To show that the matching is boy-optimal, we argue by contradiction. Let “g is an optimal partner for b” mean that among all the stable matchings g is the best partner that b can get.

We run the Gale-Shapley algorithm, and let b be the first boy who is rejected by his optimal partner g. This means that g has already been paired with some b', and g prefers b' to b. Furthermore, g is at least as desirable to b' as his own optimal partner (since the proposal of b is the first time during the run of the algorithm that a boy is rejected by his optimal partner). Since g is optimal for b, we know (by definition) that there exists some stable matching S where (b, g) is a pair. On the other hand, the optimal partner of b' is ranked (by b' of course) at most as high as g, and since g is taken by b, whoever b' is paired with in S, say g', b' prefers g to g'. This gives us an unstable pairing, because $\{b', g\}$ prefer each other to the partners they have in S.

To show that the Gale-Shapley algorithm is girl-pessimal, we use the fact that it is boy-optimal (which we just showed). Again, we argue by contradiction. Suppose there is a stable matching S where g is paired with b, and g prefers b' to b, where (b', g) is the result of the Gale-Shapley algorithm. By boy-optimality, we know that in S we have (b', g'), where g' is not higher on the preference list of b' than g, and since g is already paired with b, we know that g' is actually lower. This says that S is unstable since $\{b', g\}$ would rather be together than with their partners.

1.6 Notes

This book is about proving things about algorithms; their correctness, their termination, their running time, etc. The art of mathematical proofs is a difficult art to master; a very good place to start is [Velleman (2006)].

\mathbb{N} (the set of natural numbers) and IP (the induction principle) are very tightly related; the rigorous definition of \mathbb{N}, as a set-theoretic object, is the following: it is the unique set satisfying the following three properties: (i) it contains 0, (ii) if n is in it, then so is $n + 1$, and (iii) it satisfies the induction principle (which in this context is stated as follows: if S is a subset of \mathbb{N}, and S satisfies (i) and (ii) above, then in fact $S = \mathbb{N}$).

The references in this paragraph are with respect to Knuth’s seminal *The Art of Computer Programming*, [Knuth (1997)]. For an extensive study
of Euclid’s algorithm see §1.1. Problem 1.2 comes from §1.2.1, problem #8, pg. 19. See §2.3.1, pg. 318 for more background on tree traversals. For the history of the concept of pre and post-condition, and loop invariants, see pg. 17. In particular, for material related to the extended Euclid’s algorithm, see page 13, algorithm E, in [Knuth (1997)], page 937 in [Cormen et al. (2009)], and page 292, algorithm A.5, in [Delfs and Knebl (2007)]. We give a recursive version of the algorithm in section 3.4.

See [Zingaro (2008)] for a book dedicated to the idea of invariants in the context of proving correctness of algorithms. A great source of problems on the invariance principle, that is section 1.2, is chapter 1 in [Engel (1998)].

The example about the 8×8 board with two squares missing (figure 1.2) comes from [Dijkstra (1989)].

The palindrome madamimadam comes from Joyce’s *Ulysses*.

Section 1.3.5 on the correctness of recursive algorithms is based on chapter 5 of [Manna (1974)].

Section 1.4 is based on §2 in [Cenzer and Remmel (2001)]. For another presentation of the Stable Marriage problem see chapter 1 in [Kleinberg and Tardos (2006)]. The reference to the Marquis de Condorcet in the first sentence of section 1.4 comes from the PhD thesis of Yun Zhai ([Zhai (2010)]), written under the supervision of Ryszard Janicki. In that thesis, Yun Zhai references [Arrow (1951)] as the source of the remark regarding the Marquis de Condorcet’s early attempts at pairwise ranking.