
On the Ehrenfeucht-Mycielski sequence

Grzegorz Herman∗ Michael Soltys†

January 16, 2009

Abstract

We introduce the inverted prefix tries (a variation of suffix tries) as a
convenient formalism for stating and proving properties of the Ehrenfeucht-
Mycielski sequence ([3]). We also prove an upper bound on the position
in the sequence by which all strings of a given length will have appeared;
our bound is given by the Ackermann function, which, in light of experi-
mental data, may be a gross over-estimate. Still, it is the best explicitly
known upper bound at the moment. Finally, we show how to compute
the next bit in the sequence in a constant number of operations.

1 Introduction

In [3] Ehrenfeucht and Mycielski propose a pseudorandom1 sequence, henceforth
called the EM sequence. The sequence is computed starting with the single
bit 0; the next bit of the sequence is computed by finding the largest suffix that
occurs elsewhere, and then flipping the bit following the penultimate occurrence
of this suffix. Ehrenfeucht and Mycielski conjectured that the ratio of zeros and
ones approaches 1

2 ; experimental data confirms this, and also shows that the
convergence is very fast. However, a proof of this convergence is not known2.

The EM sequence arises from the study of decision method used by all
learning organisms. Suppose that we follow the procedure outlined in the above
paragraph, but instead of flipping the bit following the penultimate occurrence
of the sequence, we take it as is; this may be viewed as making our decision
based on past experience, where we search for the event in the past that looked
most like our current predicament. This method may seem very näıve, but [3]
claim that more or less refined variants of this method are used by all learning
organisms. From this point of view, if we flip the last bit (instead of taking it as
is) the learning organism is “always wrong,” and the resulting sequence is the
most unpredictable one—it is pseudorandom.

On the other hand, from a string-algorithms point of view, the EM sequence
is a new way of generating a disjunctive word (an infinite word that contains
all finite words as substrings). This, together with the apparent gap between
experimental and theoretical bounds on the appearance of all the words of a
given length n, makes the EM sequence an interesting object of study.
∗Computing and Software, McMaster University, grzegorz.herman@gmail.com
†Computing and Software, McMaster University, soltys@mcmaster.ca
1The sequence appears not to be statistically random, as experimental data suggests that

it violates the law of iterated logarithm (as Mycielski remarked in a private communication).
2See [1] for progress on this conjecture.

1

Our contribution is three-fold. We present a convenient formalism for ex-
pressing and proving results about the EM sequence, namely the inverted prefix
trie; this is done in section 3. The advantage of this formalism is that our proofs
are significantly simpler than those of [4] and [5]. We provide an efficient al-
gorithm for generating the sequence (not based on heuristics); given the data
structure of an inverted prefix trie, we can generate the next bit in constant
time; this is Theorem 4.5. Finally, we prove that the occurrence of all the
strings of length k is bounded by the Ackermann function; this is Theorem 5.3.
Our Ackermann bound is probably a gross over-estimate, as experimental data3

indicates that this bound may be a single exponential in k.
The structural properties of the EM sequence that we present in section 3

have been shown already; our contribution in this section is to simplify them con-
siderably thanks to the inverted prefix trie formalism. Proposition 4.2 matches
Proposition 1 in [5]; Proposition 4.3 matches the Theorem of [3] and Lemma 1
in [5]; Corollary 4.4 matches Proposition 4.3 in [4] and Proposition 4 in [5];
Corollary 4.6 matches Proposition 4.2 in [4]; Proposition 4.7 encompasses Propo-
sition 4.1 of [4] and Proposition 3 in [5]; Proposition 4.8 is a slightly stronger
version of Theorem 4.6 in [4]; Corollary 4.10 matches Corollary 4.7 in [4]; Propo-
sition 4.11 matches Corollary 4.8 in [4].

If we were to assume the result stated in [5, Lemma 3.5], we could immedi-
ately conclude an exponential upper bound, which is a vast improvement over
the Ackermann function. However, the proof of [5, Lemma 3.5] relies on the
preceding lemma of [5], whose proof in turn misses a case (in our framework,
presented in section 4, this case consists in the weight 4 of a node being dis-
tributed 3:1 among both its children and followers). We do not see how to prove
this missing case of [5], and so we believe that while the Ackermann bound is
probably a gross over-estimate, it is the best legitimate bound at the moment.

2 Notation

Let us fix the alphabet Σ = {0, 1}. A string is a finite sequence of elements
from Σ. We denote the length of s by |s|, as usual. A substring s[i..j] (for
0 ≤ i ≤ j ≤ |s|) of s consists of those characters between (and including)
positions i + 1 and j (in particular, s[0..|s|] = s and s[i..i] = ε). We will also
write s[i] as the shorthand for s[i− 1..i] (i.e., the i-th character of s) and s∗ for
the inverse of s (i.e., s written “backwards”). Prefixes and suffixes of s are
strings of the form s[0..i] and s[i..|s|] (for 0 ≤ i ≤ |s|), respectively.

For any string s 6= ε, the EM sequence4 generated by seed s, and denoted
by es, is defined as follows:

• for 0 < i ≤ |s|, es[i] := s[i]

• for i ≥ |s|, es[i+ 1] := 1− es[k + 1],
where es[j..k] is the last occurrence of the longest substring of es[0..i− 1]
which is a suffix of es[0..i]

3We have examined the first fifty million bits. The source code of the program is available
on the second author’s web page.

4The original sequence proposed by Ehrenfeucht and Mycielski in [3] is e0.

2

3 Construction Algorithm

The first thing we are going to show about the EM sequence is how to generate
it efficiently. The näıve algorithm that calculates the next bit directly from the
definition, needs up to O(n2) operations5 to generate the n-th bit. If some of
the conjectures about the EM sequence are true (e.g., no substring of length k
occurs twice before position Ω(2k)), then onlyO(n log n) operations are required.
Searching for the longest matching suffix with the help of a border array (as
used in the KMP pattern matching algorithm; see [2]) for the reverse string can
push the complexity down to O(n).

We now present an even better algorithm. An inverted trie (over Σ) is
a finite, rooted tree, with edges labeled using elements of Σ, with every node
having at most one outgoing edge for every label. In particular, for Σ = {0, 1}
it is a binary tree.

Every node u in the trie represents a string (denoted as û) obtained by
concatenating the labels on the path from u to the root. The trie itself represents
the set of strings represented by all its nodes. Note that this set is closed under
extracting suffixes, and that the root represents ε, the empty string.

An inverted prefix trie (IPT)6 of a string s is the smallest inverted trie
(i.e., an inverted trie with the least number of nodes) representing all prefixes
of s. Since every substring of s is a suffix of some prefix, one can say that an
IPT for s contains all substrings of s. For example, an IPT for s = 01011 is
given in Figure 1.

'&%$!"#a
0

����������
1

''OOOOOOOOOOOOOO

'&%$!"#b
1

��

'&%$!"#c
0

�����������
1

��=========

/.-,()*+d
0

��

'&%$!"#e
1

��

/.-,()*+f
0

��'&%$!"#g /.-,()*+h
0

��

'&%$!"#i
1

��/.-,()*+j /.-,()*+k
0

��'&%$!"#l

Figure 1: An inverted prefix trie (IPT) for s = 01011.

The prefixes of s = 01011 are 0, 01, 010, 0101, 01011, and we can see that
5Following the common practice in string algorithm literature (see, for example, [6]), we

treat operations on string indices as atomic (i.e., requiring constant time)—the actual time
complexity (“measured” on a Turing Machine) is therefore higher by at least a factor of log n.

6The more common formalism is that of suffix tries; we could use those and examine the
string backwards instead. However, the EM sequence grows to the right, so IPTs are more
intuitive for our application. See [6] for more background on suffix tries.

3

they can be obtained by traversing the tree in Figure 1 to the root starting at
nodes b, e, g, j, l, respectively.

Given an s, we can now construct the sequence es as follows:

Algorithm 3.1 (Construction of es).

1. set w := ε
let T be an inverted trie containing only the root
label the root of T with 0

2. for i = 1, 2, . . .:
3. if i ≤ |s|, set a := s[i]
4. let w := aw
5. traverse T from the root, following the path described by w as

far as possible, updating the labels of all visited nodes to be i
6. let k be the previous label of the last visited node
7. add a branch described by the remaining part of w below the

last visited node, labeling all the nodes on that branch by i
8. output a as es[i]
9. set a := 1− es[k + 1]

Proposition 3.2. The correctness of algorithm 3.1 follows from the following
invariants, which hold after the i-th iteration:

• w = es[0..i]∗ (recall that w∗ is the string w written backwards),

• the leaf of the added branch represents es[0..i],

• T is the inverted prefix trie of es[0..i],

• the label of any node u in T is the position of the end of the last occurrence
of û in es[0..i] (recall that û is the string obtained by reading all labels
from u to the root),

• k is the position of the end of the longest substring of es[0..i− 1] which is
also a suffix of es[0..i].

The proof of the invariants in Proposition 3.2 is a straightforward induction
on i, so we do not carry it out here.

How long does it take to generate the n-th bit of es? We need a number
of operations proportional to the depth of T . If we keep T in the simple form
described above, it is Θ(n) and we seem to have gained nothing over the KMP
algorithm.

Given an IPT, we can perform the following space-saving operation on it7:
given a node x with a single child y, and the edge (x, y) labeled with b, if x
has a parent z (which is always the case unless x is the root), we delete y and
prepend b to the label on (z, x). See Figure 2. We continue performing this
action until there are no more nodes with a single child (other than possibly
the root). We say that such a trie is compressed. See Figure 3 which is the
compressed version of Figure 1. Note that in a compressed trie the edges are
labeled by strings of characters.

In a compressed trie the cost will become bounded by the length of the
matched suffix, which, from the experimental data, appears to be O(log n).

7This is the IPT counterpart of the regular suffix trie compression technique.

4

'&%$!"#z
a

��~~~~~~~~

��======== '&%$!"#z
ba

��~~~~~~~~

��========

'&%$!"#x
b

��

'&%$!"#x
c

����������
d

��?????????

'&%$!"#y
c

����������
d

 AAAAAAAA

Figure 2: Eliminating nodes with an only child.

'&%$!"#a
010

����������
1

''OOOOOOOOOOOOOO

'&%$!"#b '&%$!"#c
010

�����������
0101

��=========

'&%$!"#e /.-,()*+f

Figure 3: Compressed IPT for s = 01011 (shown in Figure 1).

But we are going to show in theorem 4.5 that we can do much better; a
modification of algorithm 3.1 finds the n-th bit in only O(1) operations (constant
number of operations).

4 Properties of the Sequence

The inverted prefix trie provide an efficient method for generating the EM se-
quence, and exhibit, as it were, its internal structure. The results in this section
will illustrate how well the IPTs captures this structure; the proofs are succinct
and the formalism very handy.

Let us first introduce some useful terminology. Analogously to the usual
tree notions of the parent, 0-child and 1-child of a node (in an inverted
trie, representing the same string with a single bit removed or added at the
beginning), we define the precursor, 0-follower and 1-follower of a node to
be the nodes representing the same string with one bit removed or appended
at the end. That is, given a node u, representing a string û, its 0-follower is
the node representing û0, and its 1-follower is the node representing û1. Note
that in a tree the parent-children relationship is easy to see, while we may need
to “jump” to a different part of the tree to find a precursor or follower. As
usual, the ancestor and descendant relations are the reflexive and transitive
closures of parent and child relations, respectively.

For example, in Figure 1, node c is the parent of node e and node f , node e
is the 0-child of node c, and node f is the 1-child of node c. A precursor of
node h (ĥ = 101) is node d (d̂ = 10). A 0-follower of node e (ê = 01) is node g
(ĝ = 010) and a 1-follower of node j (ĵ = 0101) is node l (l̂ = 01011).

5

By “time i” we mean the moment after the i-th iteration of the loop in step 2
of algorithm 3.1. We call the last node visited in step 5 the i-th insertion
point, and the leaf of the branch added in step 7—the i-th pioneer (it will
eventually stop being a leaf, but we want to remember that it once was a leaf).
Pioneers are precisely those nodes which are first to exist at their levels of the
trie, and so precisely the nodes representing the prefixes of es.

The weight of a node (at time i) is the number of pioneers in its subtree—
this is exactly the number of times the string represented by this node has
appeared in the sequence. For example, in Figure 1 node c has three pioneers
in its subtree: nodes e, j, l. Note that although node e is not a leaf, it is still
a pioneer (as it was a leaf at time 2). Consequently, the weight of node c is 3,
and indeed, the string 1 (ĉ = 1) occurs three times in the string s = 01011.

Using this new vocabulary we can now prove some interesting properties of
the EM sequence8.

Proposition 4.1. The following three statements are true:

1. the precursor of any node u appears before u does,

2. the (i+ 1)-st pioneer is a follower of the i-th,

3. if a node exists at time i, it has at least one follower at time i+ 1.

Proof. If y = xa is the string inserted into the IPT at time i + 1, then x was
the string inserted at time i. Therefore, every node on the path from the root
to the (i + 1)-st pioneer (which represents y) has its precursor on the path to
the i-th pioneer (which represents x).

For example, in Figure 1, the 4-th pioneer is node j, while the 3-rd pioneer is
node g. Consequently, the precursors of nodes j, h, b, c (which are the nodes on
the branch from the root to the 4-th pioneer) are the nodes g, d, b, respectively
(which are the nodes on the branch from the root to the 3-rd pioneer).

All three claims in the proposition follow directly from this observation.

Proposition 4.2. If a node u has weight 2 or more at time i, it has both
followers by time i+ 1.

Proof. Consider the time j, where j ≤ i, when the weight of u changes from 1
to 2. The j-th insertion point has to be a descendant of u. The next inserted
bit is therefore different from the one that followed the first (which was the only
previous) occurrence of û. Thus u gains a new follower at time j + 1 ≤ i + 1
and we have the proposition.

Proposition 4.3. The IPT of es converges to the full binary tree.

Proof. Assume that there is a node whose left subtree remains bounded. Let u
be the shallowest such node and let d bound the depth of its left subtree—refer
to Figure 4.

Consider v, the precursor of u. Because of the way u was chosen, the left
subtree of v is unbounded. Therefore we can find a node w in that subtree,
of depth at least d and of unbounded weight. But one step after the weight
of w reaches 2, by Proposition 4.2, it is going to have both followers. One of

8All proofs work directly for e0 and e1. Some technical modifications are required to take
care of longer seeds, but we have decided to omit them for clarity.

6

JJ

d

��

∗

v

+

�H
�H
�H
�H
�H

u

+

	I
	I
	I
	I
	I

w

z

Figure 4: Proof of proposition 4.3. In this figure, and henceforth in all figures,
we use solid and dotted lines to represent parent-child and precursor-follower
relations, respectively. A label of “+” denotes a path with at least one edge,
and “∗” a possibly empty path. The squiggly line denotes descendants, i.e., not
necessarily a child, but a grand-child, or a great-grand-child, etc.).

them (call it z) is inevitably in a left subtree of u, and of depth greater than d,
yielding a contradiction.

A similar argument holds for the right subtree of u. This shows that ev-
ery node in the tree eventually obtains a left and right child, and proves the
statement of the proposition.

Corollary 4.4. Every pioneer becomes an insertion point exactly twice, and
every other node exactly once.

Proof. Pioneers are created as leaves (with no children), and all other nodes
are created with a single child. Being an insertion point adds a single new
child. According to Proposition 4.3, every node will eventually have exactly
two children. Combining the above we reach the conclusion.

Theorem 4.5. The n-th bit of the EM sequence can be computed in O(1)
operations, i.e., in constant time.

Proof. Let us now consider a different way of finding the (i + 1)-st insertion
point u than the one used in Algorithm 3.1.

Let w be the i-th insertion point; by the same observation that we used to
prove Proposition 4.1, we know that every node on the path from the root to
the (i + 1)-st pioneer has its precursor on the path to the i-th one. Thus u is
a follower of some ancestor (which we call v) of the i-th insertion point (which
we already called w).

The weight of w at time i is at least 2, as it is an insertion point. If it is
3 or more, it had to be at least 2 at time i − 1. But then by time i it would
have both followers and we would have v = w. Otherwise, w has weight exactly
2 and, because of the way the bits are chosen, its appropriate follower is just
about to be created. In this case v has to be the closest ancestor (an ancestor
that is farthest from the root) of w with larger weight, which is precisely the
first insertion point encountered while traversing the IPT upwards.

This suggests that if the compressed IPT representation was enriched by the
follower and weight information, the next insertion point could be found in a

7

fixed number of operations9. Moreover, as weights of 3 or more are equivalent
for the working of this algorithm, and the next bit can be found by looking at
the missing follower of the next insertion point, no information on the path to
the root would need to be updated. This yields an algorithm that generates the
n-th bit of the EM sequence in O(1) operations.

Corollary 4.6. The following conditions are equivalent:

1. The depth of insertion increases between steps i and i+ 1.

2. The weight of the i-th insertion point (at time i) is at least 3.

3. The i+ 1-st insertion point is a follower of the i-th.

Proposition 4.7. The following conditions are equivalent:

1. The insertion depth attains a new record value at time i+ 1.

2. The i-th insertion point is a pioneer, matching the second time.

3. The i+ 1-st insertion point is a pioneer, matching the first time.

Proof. We prove three implications.
[1 =⇒ 2] The insertion depth has to increase to attain a record value, which

means that the i-th insertion point needs to have a weight of at least 3. But
it cannot have former insertion points as descendants (because then the new
depth would not be a record), so both its children have weight at most 1 each.
Thus it has to be a pioneer and it has to be its second time to match.

[2 =⇒ 3] Consider the two moments when a pioneer becomes an insertion
point. The first time, the bit appended to the sequence is different than the
one that followed the prefix represented by this pioneer. Therefore the second
time it becomes an insertion point, a longer prefix (corresponding to the next
pioneer) is going to match for the first time.

[3 =⇒ 1] Assume that the i+ 1-st insertion depth d is not a record. There-
fore there must have been at least d record-breaking insertions before (as by
Corollary 4.6, the insertion depth can only increase by 1 at a time) Each of
them had (by [1 =⇒ 2]) to follow the matching of a (different) pioneer, so each
pioneer of depth up to d had to be matched. But then the i + 1-st insertion
point (being a pioneer of depth d) would have matched already, contradicting
the assumption that it is its first time to match.

We can thus see that the pioneers “regulate” the increase of the insertion
depth. We can therefore divide the whole history of the inverted prefix trie into
“rounds” during which the record insertion depth remains constant. These are
exactly the periods between the first and second match of a pioneer.

Proposition 4.8. Once a node u becomes an insertion point before its proper
ancestor v, no node deeper than v can match before v does.

9The precursor information analogues the suffix links of the suffix tree construction algo-
rithms (see Section 5.2 of [6]). Followers can be managed simultaneously—whenever a node
u is identified as a precursor of v, v can be linked as a follower of u.

8

v

+

	I
	I
	I
	I
	I

z

+

	I
	I
	I
	I
	I

w

u y

Figure 5: Proof of proposition 4.8

Proof. (refer to Figure 5) Assume to the contrary that u is the first node to
break the above. We can see that the weight of u, when it is an insertion point,
equals 2—otherwise some descendant of u (of which v is also a proper ancestor)
would become an insertion point earlier, contradicting the way u was chosen.
Thus we know that the next insertion point after u cannot lie deeper than v.

Now let w be the earliest (after u) insertion point coming both before and
deeper than v. Note that, as the insertion depth can only increase by 1 at a
time, w has to be exactly one level deeper than v. As the insertion depth has
increased but not reached a new record value, the precursor of w (call it z)
was the previous insertion point with weight 3, but was not a pioneer. But
then its proper descendant y had to match before z did. It cannot have come
before u, because then u would come between it and z (conflicting the choice
of u). It cannot have come after u either, due to the choice of w. The resulting
contradiction proves the claim.

Combining the last two propositions we immediately get the following.

Corollary 4.9. At every threshold (moment between rounds), the insertion
points form a connected fragment of the full binary tree, with respect to both
parent-child and precursor-follower relationship (i.e., every ancestor and precur-
sor of every insertion point has already become an insertion point itself)10.

Corollary 4.10. A node cannot become an insertion point after its weight
reaches 3.

Proof. When the weight of a node u reaches 3, it must have two insertion points
as descendants. But then whichever of them came first, the other would have
come before u does, contradicting Proposition 4.8.

u

+

	I
	I
	I
	I
	I

v

+

	I
	I
	I
	I
	I

y w

z

Figure 6: Proof of proposition 4.11

10Looking at the EM sequence, it means that at every threshold, if a string s has matched,
all its substrings have matched as well, and they are not going to match again.

9

Proposition 4.11. The insertion depth cannot increase twice in a row.

Proof. Let u, v and w be the insertion points at times i, i + 1 and i + 2, and
assume that the insertion depth increases both between u and v and between
v and w. The weight of v at time i + 1 has to be 3. It cannot be a pioneer,
as then so would be u, but the insertion depth could not attain a record value
at time i + 1, as v would need to be an insertion point before. Thus there is a
proper descendant z of v having weight 2 at time i. Its precursor y has to be a
former insertion point, with weight 3 at time i. But, as it is also a descendant
of u, this would force the weight of u to be 3 before it matched, which cannot
happen.

5 An Upper Bound

In Proposition 4.3 we have shown that every string appears in the EM sequence.
We are now going to present an upper bound on when this happens.

Let f(i, j) be the least position in e0 by which every string of length i is
guaranteed to occur j times. Let g(i, j) be the least number l such that one
step after any string s of length i has appeared l times, both s0 and s1 have
appeared at least j times each. In terms of inverted prefix tries, g(i, j) bounds
the weight a node u of depth i can reach one step before both its followers reach
weight j.

Lemma 5.1. The function g(i, j) can be recursively bounded from above as
follows:

g(i, 1) = 2 (1)

g(i, j + 1) ≤ f(i, g(i, j))2. (2)

Proof. (1) follows trivially from Proposition 4.2. To show (2), take a node u of
depth i and consider the moment when it reaches weight g(i, j) (and so, both
its followers have weight j already). By definition of f , this has to happen no
later than at time f(i, g(i, j)), and so the cardinality of u’s subtree is bounded
by g(i, j)f(i, g(i, j)).

Looking into the future of u’s subtree, let us bound the number of times
an insertion can happen at one of the currently existing nodes. Each of the
pioneers (and there are g(i, j) many of them) can become an insertion point at
most twice, every other node at most once. Therefore when the weight of u
exceeds g(i, j)(f(i, g(i, j))+1), a node that does not currently exist will become
an insertion point. It will immediately gain both followers, and each of them
will contribute to the weight of the appropriate follower of u, thus forcing them
both to have weight at least j + 1, as required. From this discussion we obtain:

g(i, j + 1) ≤ g(i, j)(f(i, g(i, j)) + 1). (3)

Also note that for all i, j ≥ 1,

j + 1 ≤ 2i + j ≤ f(i, j). (4)

10

We are now ready to prove the main result:

g(i, j + 1) ≤ g(i, j)(f(i, g(i, j)) + 1) (by (3))
= g(i, j) + g(i, j)f(i, g(i, j))
≤ f(i, g(i, j)) + g(i, j)f(i, g(i, j)) (by (4))
= f(i, g(i, j))(g(i, j) + 1)
≤ f(i, g(i, j)f(i, g(i, j)) (by (4) again)

= f(i, g(i, j))2,

which ends the proof.

Lemma 5.2. The function f(i, j) can be recursively bounded from above as
follows:

f(1, j) ≤ 2j+1 (5)
f(i+ 1, j) ≤ f(i, g(i, j)) + 1. (6)

Proof. We first deal with (5). By time 2j + j < 2j+1 a string of length j had
to appear twice, and so the insertion depth must have reached j. But before
that happens, the first j pioneers have to match11 (and so have both followers),
which guarantees at least j occurrences of both 0 and 1.

To show (6), consider a string ua (|u| = i). One step after u has appeared
g(i, j) many times (which is not later than at time f(i, g(i, j))), both u0 and u1
(and so ua, being one of them) must appear at least j times.

Consider the Ackermann function A : ω −→ ω:

A(0, j) := j + 1 (7)
A(i+ 1, 0) := A(i, 1) (8)

A(i+ 1, j + 1) := A(i, A(i+ 1, j)). (9)

Theorem 5.3. f(i, j), g(i, j) ≤ A(4i, j)

Proof. The proof is by induction on i. More precisely, we prove the statement
α(i), where

α(i) := (∀j ≥ 1)[f(i, j) ≤ A(4i, j) ∧ g(i, j) ≤ A(4i, j)], (10)

by induction on i.
For the basis case of i = 1, note that f(1, j) < 2j+1 while A(4, j) > A(3, j) =

2j+3−3. Also g(1, j) < f(1, g(1, j−1))2 < 22g(1,j−1), so g(1, j) is bounded by a
stack of 4’s of height j. On the other hand, A(4, j) + 3 is a stack of 2’s of height
j + 3. It is an easy proof by induction to show that g(1, j) < A(4, j).

11See the discussion following Proposition 4.7

11

For the induction step, assume α(i) (i.e., (10)), and show α(i+ 1). We show
first that f(i+ 1, j) ≤ A(4(i+ 1), j), for j ≥ 1:

f(i+ 1, j) ≤ f(i, g(i, j)) + 1 (by (6))
= A(4i, g(i, j)) + 1 (by (10), i.e., IH)
= A(4i, A(4i, j)) + 1 (by (10), i.e., IH)
≤ A(4i+ 3, A(4i+ 4, j − 1)) (properties of Ackermann fn.)
= A(4i+ 4, j) (by (9))
= A(4(i+ 1), j). (11)

We show second that g(i+ 1, j) ≤ A(4(i+ 1), j). When j = 1, then g(i+ 1, 1) =
2 < A(4(i+ 1), 1). For j ≥ 2 we have:

g(i+ 1, j) ≤ f(i, g(i, j − 1))2 (by (2))

≤ A(4i, g(i, j − 1))2 (by (10), i.e., IH)

≤ A(4i, A(4i, j − 1))2 (by (10), i.e., IH)
≤ A(4i+ 3, A(4i+ 4, j − 1)) (properties of Ackermann fn.)
= A(4i+ 4, j) (by (9))
= A(4(i+ 1), j).

which finishes the proof.

Thus we have shown that the least position in e0 by which every string of
length i is guaranteed to occur j times is bounded above by the Ackermann
function A(4i, j). In light of experimental data this seems to be a gross over-
estimate. Still, it is the best explicitly known upper bound at the moment.

6 Acknowledgments

We are very grateful to Jan Mycielski for many discussions and for feedback
on this paper. We are also indebted to two anonymous referees for insightful
comments that greatly improved the presentation of this paper.

References

[1] John C. Kieffer; W. Szpankowski “On the Ehrenfeucht-mycielski balance
conjecture” DMTCS Proceedings from the Conference on Analysis of Algo-
rithms, pages 19–28, 2007.

[2] Donald Knuth; James H. Morris, Jr; Vaughan Pratt “Fast pattern matching
in strings” SIAM Journal on Computing, 6 (1977), vol. 2, pp. 323-350

[3] Andrzej Ehrenfeucht; Jan Mycielski “A Pseudorandom Sequence—How
Random Is It?” American Mathematical Monthly, 99 (1992), pp. 373-375

[4] Terry R. McConnell “Laws of Large Numbers for Some Non-Repetitive Se-
quences” Technical report, Syracuse University, Department of Mathematics
(1996)

12

[5] Klaus Sutner “The Ehrenfeucht-Mycielski sequence” Lecture Notes in Com-
puter Science, 2759 (2003), pp. 282-293

[6] William Smyth “Computing Patterns in Strings” Addison Wesley; 1st edi-
tion (2003)

13

