Distributed graph models and transformations – slashed graph representation in design and control problems

A. Sędziwy, PhD
Department of Applied Computer Science
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering
AGH University of Science and Technology
Outline

• Research background
• Graphs distribution
• Real-life drivers
• Lighting design & control
• Results
Research background

• Graphs – Flexible representation of systems – both static and dynamic ones
• System changes modeled by graph transformations
Graphs transformations

- Structural and semantic changes are modeled by graph transformations
- **Graph grammars** – generalization of string grammars
A **graph grammar** is a system $G = (\Sigma, \Delta, P, Z)$ where:

- Σ is a finite nonempty set, called the **total alphabet**,
- $\Delta \subset \Sigma$ is a terminal alphabet,
- P is a finite set of **productions** of the form (α, β, ψ) where α is a connected graph, β is a graph and $\psi : V_\alpha \times V_\beta \times \Sigma \rightarrow \{0, 1\}$ is an **embedding function** of the production, and
- Z is a graph over Σ, called the **axiom**
Graph grammar production – intuitive approach

Left-hand side graph matching

Replacing X with right-hand side graph

Embedding right-hand side graph
Graphs transformations (cont.)

• Two contradictory approaches: expressiveness vs low computational complexity

• Is a polynomial complexity, say $O(N^3)$, satisfactory?
Complexity issue – workaround

• Using grammars of a polynomial (quadratic) complexity – **not sufficient!**

• Graph distribution – *Replicated Complementary Graphs* (RCG) representation

 [Ref: Kotulski, A. Sędziwy, *GRADIS -- the multiagent environment supported by graph transformations*, Simulation Modelling Practice and Theory : International Journal of the Federation of European Simulation Societies, 2010]

• Distributed graph transformations are proven to have the polynomial complexity

Real-life drivers

- The global number of streetlights is estimated to increase by 60 millions and reach nearly 340 million by 2025 [Northeast Group]
 - Expected annual electric power energy costs: $23.9B to $42.5B by 2025
- Even small unit power efficiency improvement can yield significant savings
- Objective: improving energy efficiency of public lighting
Real-life drivers (cont.)

• Large-scale retrofit of roadway lighting
• Wide-area street lighting control systems
• Energy efficient outdoor lighting systems
• R&D Projects:
 – **Products and Services of a Living Smart Energy City Lab**, the city of Geel, Belgium (settings for 5,500 HPS fixtures)
 – **SOWA Project** (5,500 HPS → LEDs fixtures)
 – **ISE Project** (3,700 HPS → LEDs fixtures)
 – Public lighting retrofit in the city of **Pabianice**, Poland (700 HPS → LEDs fixtures)
Photometric Computations

• Luminance related requirements have to be met on each calculation field
• Full uniformity is imposed for calculations made by industry-standard software
Real-life drivers (cont.) – new approach to lighting design

- Actual coordinates of poles and a road layout instead of averaged values
- The method yields substantial power savings (up to 15%) [Ref: A. Sędziwy, A New Approach To Street Lighting Design, LEUKOS: The Journal of the Illuminating Engineering Society of North America, 12(3), 2016]
- Impact of neighboring buildings can be important as well (reflection of light)
- The cost paid is the significant growth of computational complexity
Problem formulation

• Large-scale computations performed during lighting design/optimization are not doable in a reasonable time, even when supported by industry-standard software (e.g., DIALux)

• Achieving additional power savings in public lighting requires applying another, scalable computational method capable of bearing the new lighting design methodology
Problem solution – hierarchical hypergraph distributed model

• Hypergraph representation is a necessity!

• Covers
 – Massive objects (buildings)
 – Dimensionless entities (sensors, lamps)
 – Areas (streets)
 – Any relations among them

Test cases – hypergraph sizes, the scale of a problem

<table>
<thead>
<tr>
<th>City</th>
<th>Nodes</th>
<th>Edges (tot.)</th>
<th>Hyperedges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona</td>
<td>2918</td>
<td>2205</td>
<td>897</td>
</tr>
<tr>
<td>Chicago</td>
<td>1989</td>
<td>1552</td>
<td>631</td>
</tr>
<tr>
<td>Rome</td>
<td>2888</td>
<td>2361</td>
<td>790</td>
</tr>
<tr>
<td>Tokyo</td>
<td>3259</td>
<td>2779</td>
<td>861</td>
</tr>
</tbody>
</table>

Data source: OpenStreetMap
Hierarchical hypergraph model

- An upper level graph (ULG) – the coarse grain representation – subject to decomposition
- A lower level hypergraph – nodes of an ULG are expanded **locally** into hypergraphs representing physical objects
Hierarchical hypergraph model (cont.)

(a)

(b)

(c)
Distributed graph model application

• The new design method remains useless unless some efficient calculation approach is applied

• The new paradigm of a roadway lighting design/optimization requires new computational environment expressive enough to model:
 – Lighting infrastructure
 – Areas
 – Buildings

• Hierarchical hypergraph model + multi-agent computations

[Ref: A. Sędziwy, L. Kotulski, *Towards highly energy-efficient roadway lighting*, Energies, 9(4), 263, 2016, MDPI]
Distributing graphs (cont.)

- **Slashed graphs** representation
 - More suitable than RCG (no replication is required)
 - Limited numbers of synchronizing parties, locked nodes/edges and messages being exchanged among agents are proven

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RCG representation</th>
<th>Slashed representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of coordinating agents</td>
<td>(O(N))</td>
<td>(O(2))</td>
</tr>
<tr>
<td>Number of locked nodes/edges</td>
<td>(O(d \cdot N))</td>
<td>(O(d))</td>
</tr>
<tr>
<td>Number of updating messages</td>
<td>(O(d \cdot N^2))</td>
<td>(O(d))</td>
</tr>
</tbody>
</table>

d – maximum node degree in a centralized graph, \(N\) – number of subgraphs

Graph slashing

Slashed graphs are ready to use
1. Selecting the node to be incorporated
2. Contacting the assoc. dummy node (c’)
3. Responder slashes edges incident to c’
4. Nodes are moved to Initiator
Graph transformation in distributed environment

1. Making all LHS nodes be private ones
2. LHS graph matching
3. Replacing the LHS graph with the RHS one (re-connecting it with a rest of the graph)
Additional heuristics

• DRY (Don’t repeat yourself) methodology: no input pattern is processed twice

Optimization of lighting installations on the area decomposable into 2886 calculation fields
Area of application

- **Lighting design**
 [Ref: A. Sędziwy, L. Kotulski, *Multi-agent system supporting automated large-scale photometric computations*, Entropy 18(3), 76, 2016, MDPI]

- **Optimizing existing lighting installations**
 [Ref: A. Sędziwy, *Sustainable Street Lighting Design Supported By Hypergraph-Based Computational Model*, Sustainability, 8(1), 13, 2016, MDPI]

- **Preparing adaptive lighting control systems**
 [Refs:
 • I. Wojnicki, S. Ernst, L. Kotulski, A. Sędziwy, *Advanced Street Lighting Control*, Expert Systems with Applications, 2014, Elsevier,

- **Support for architectural design tools**
ISE Project

- **3748** HPS fixtures → LEDs
- **622** calculation fields (239 streets)
- **73** control cabinets

Impact on energy efficiency

Public lighting is an important part of a smart city
“That’s all Folks!”